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Abstract
Age- or stage-structured population models, also known as life cycle models, are a mainstay of 
applied ecology and conservation, particularly in fisheries management. The data available to 
inform parameters in such models are, however, often limited and variable in quality. Ad-hoc, 
piecemeal approaches to parameter estimation can lead to biased inference about key processes, 
such as the strength of density dependence and the magnitude of environmental variability in 
recruitment. Recent statistical advances have facilitated a more rigorous, comprehensive approach 
to fitting life cycle models by combining all relevant data into a joint likelihood function. 
Such integrated population models (IPMs) have been widely applied in marine fisheries stock 
assessment, but are less familiar in salmonid management.

We developed a multipopulation IPM for Pacific salmon (Oncorhynchus spp.) that accounts for spatial 
and temporal variability in adult recruitment and age structure, the presence of hatchery-origin 
spawners, and observation error in abundance, age-composition, and hatchery-fraction data. The 
method is analogous to traditional spawner–recruit modeling based on brood-table reconstruction, 
but the model is fitted to the “raw” data and distinguishes between process and observation error.

We applied the model to 29 populations of spring/summer Chinook salmon in the Snake River 
and Upper Columbia River Evolutionarily Significant Units (ESUs), and used the estimated 
parameters and states to simulate the impact of fishery exploitation rate on future abundance 
and quasi-extinction risk. As expected, predicted abundance declined and quasi-extinction risk 
increased across a range of fixed harvest rates from 0–0.3. The slope of the decline in abundance, 
relative to population-specific carrying capacity, was inversely related to intrinsic productivity. 
Large-scale environmental fluctuations (e.g., ocean conditions and hydrosystem operations, 
represented by the shared process error) were at least as important as harvest in determining long-
term population viability. If future environmental conditions are relatively poor, and especially if 
they are assumed to have undergone a persistent state shift at some point in the last 60 years, then 
quasi-extinction risks are dramatically elevated even in the absence of harvest. We see potential 
for the further development of IPMs (e.g., the inclusion of more detailed stage structure) and their 
application to salmon conservation problems throughout the Pacific Northwest.
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Introduction
Managing at-risk species requires understanding the degree to which population dynamics are 
governed by density dependence versus other environmental drivers. In many cases, however, the 
data necessary to complete a comprehensive assessment are spatially and temporally limited, which 
creates unique challenges for identifying the underlying demographic causes of population declines. 
For example, errors in population censuses from incomplete surveys, when not appropriately 
modeled, may lead to underestimates of recruitment (Sanz-Aguilar et al. 2016) or overestimates 
of the strength of density dependence (Knape and de Valpine 2012). Similarly, imprecision in the 
estimated age composition of a population can bias the estimated strength of density dependence 
(Zabel and Levin 2002). In turn, any management decisions based on such models could be 
misguided, potentially hindering recovery of the population. Therefore, proper consideration of all 
sources of uncertainty in the data is necessary to design robust conservation strategies.

Life cycle models are commonly used to evaluate the potential response(s) of populations to 
various scenarios of future conditions. Traditionally, their development follows a two-step 
process, whereby: 1) population growth rates and demographic rates are informed by multiple 
data sources with separate likelihoods, and 2) the estimated parameters and data are then used as 
inputs into population projection models or stock assessments (Schaub and Abadi 2011, Maunder 
and Punt 2013). This approach suffers from several drawbacks. First, the available raw data are 
used inefficiently (i.e., information is lost when summarized to calculate demographic rates), 
which creates problems for determining the appropriate likelihood functions and evaluating 
model diagnostics. Second, there is no formal assessment of the variance and covariance within 
and among model parameters, which would require some form of joint likelihood based on all 
available data. Third, failure to acknowledge trade-offs among parameters—and the fact that any 
given type of data (e.g., age structure) may contain information on multiple aspects of population 
dynamics (e.g., recruitment and survival)—can lead to biased parameter estimates.

More recently, so-called integrated population models (IPMs) have been used to address these 
shortcomings. IPMs are based on a joint likelihood constructed from each of the individual 
data likelihoods, which ideally captures the full uncertainty in the data (Schaub and Abadi 
2011, Maunder and Punt 2013) and improves the precision and accuracy of parameter estimates 
(Tavecchia et al. 2009, Johnson et al. 2010). IPMs are closely linked to state-space models (de 
Valpine and Hilborn 2005), which are hierarchical models consisting of a process model (a 
stochastic description of the true but unobservable population dynamics) and an observation 
model (a model of the noisy data, conditional on the true state of the population). Furthermore, 
if IPMs are set up in a hierarchical fashion to model multiple populations simultaneously, 
information “borrowed” from data-rich populations helps to improve the precision of parameter 
estimates in relatively data-poor ones (Punt et al. 2011, Jiao et al. 2011). 



IPMs have been used in a variety of studies related to conservation of birds (Schaub et al. 2007, 
Oppel et al. 2014) and the management of exploited mammals (Tavecchia et al. 2009, Johnson et 
al. 2010) and marine fishes (Ianelli 2002, Punt et al. 2010), but they are less familiar in salmonid 
management and conservation. The IPM for Pacific salmon that we describe here shares some 
features with the models of Newman et al. (2006), Su and Peterman (2012), Fleischman et al. (2013), 
and Winship et al. (2014), but we expand upon previous analyses in two ways. First, we allow for the 
possibility that a spawning population might include hatchery-origin fish, treating their abundance 
as an unknown state to be estimated. Second, we extend the process model to represent an 
ensemble of populations with potentially correlated process errors, using a hierarchical framework.

In this report, we use this model to evaluate the effects of alternative assumptions about harvest 
mortality on the abundance and quasi-extinction risk of populations in the Snake River spring/
summer and Upper Columbia River spring Chinook salmon Evolutionarily Significant Units 
(ESUs). These analyses were conducted at the request of the NMFS West Coast Region and are 
intended to be helpful for evaluating alternative management actions.

We took several steps to adapt and enhance our models for use in evaluating harvest actions. The 
models were already under development with an objective of being available to inform future 
Federal Columbia River Power System (FCRPS) evaluations. This modeling framework has recently 
been reviewed by the Independent Scientific Advisory Board.1 For the purposes of this report, and 
given the relatively short time frame available for model development, the application presented here 
focuses solely on harvest mortality and does not include detailed components for directly assessing 
other factors such as tributary habitat actions, hatchery supplementation, or alternative hydropower 
actions. Development of those components will continue for future assessments in support of 
recovery planning and evaluation of tributary habitat strategies. In addition, the models are 
designed to assess only a hypothetical constant harvest mortality rate, and do not take into account 
abundance-based harvest control rules. With respect to these simplifications, our approach is similar 
to the analysis of “recovery exploitation rates” (RERs) that has previously been conducted for the 
Puget Sound and Lower Columbia River Chinook salmon ESUs (NMFS 2004, Ford et al. 2007).

1 https://www.nwcouncil.org/fw/isab/isab2017-1/
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Methods
Traditional run reconstruction

The traditional approach to spawner–recruit analysis for salmonids begins by reconstructing the 
time series of recruits from annual observations of spawner abundance, age structure, hatchery 
fraction, and harvest rate (the “brood table”). The paired values of spawners and recruits are then 
used as independent and dependent variables, respectively, in a regression model to estimate the 
parameters representing the expected distribution of recruits for a given number of spawners. 
Specifically, recruits born in spawning year t are calculated as the sum of returning spawners in 
subsequent years weighted by age structure, expanded to include harvest, and discounted by the 
fraction of hatchery-origin spawners so only natural-origin recruits are counted:

Rt
obs =

St+a
obsqt+a ,a

obs 1− pHOS,t
obs( )

1− Ft ,a
obs

a
∑ .

Here, Stobs is spawner abundance in year t, qt ,a
obs is the proportion of spawners of age-a, Ft ,aobs is the 

(possibly age-specific) harvest rate, pHOS,t
obs  is the proportion of hatchery-origin spawners, and the 

summation is over all adult ages. The superscripts indicate that these are observed or measured 
quantities (i.e., data or sample statistics). The regression model is then

Rt
obs = f (St

obs |θ)eεt ,

where f is the spawner–recruit function with parameter vector θ and εt ~ N(0,σ2) is a residual error.

Integrated population model

The traditional run-reconstruction regression approach treats the observed spawner abundance 
(the “independent variable”) as a quantity that is known precisely. By conditioning the predicted 
recruitment on observed spawner abundance in each cohort, it implicitly assumes that the 
residual deviations are due to process error alone (Hilborn and Mangel 1997), yet it is not truly a 
process-error model because it does not account for the biological and mathematical dependence 
of Stobs on the “dependent variable,” Rt

obs. This leads to the well known time-series and errors-in-
variables biases (Ludwig and Walters 1981, Walters and Ludwig 1981), which can severely affect 
estimates of the spawner–recruit parameters and management reference points. 

Furthermore, a single missing observation of any of the quantities in the brood table induces 
multiple missing recruitment estimates (equal to the number of adult age classes), and the 
regression framework simply omits these missing values. In particular, if amax is the age of the 
oldest spawners, then the final amax – 1 years of recruits will be missing, because the complete 
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cohorts have not yet returned to spawn and be counted. As a result, short-term forecasts cannot 
be conditioned on the most recent (and perhaps most informative) observations. If, instead, 
missing observations of age structure are imputed using spatial or temporal averages, as is often 
done in Columbia River populations when age-frequency sample sizes are small or zero, then the 
recruitment from small spawning cohorts may be overestimated, biasing estimates of productivity 
and density dependence (Zabel and Levin 2002).

As an alternative approach, we develop an IPM to describe the complete life cycle (i.e., adult-to-
adult) dynamics of one or more salmon populations. The process model begins with the spawner–
recruit function,

Rt = f (St |θ)e
εt ,

but here the variables St and Rt represent the true, unknown state of the population, and 
εt ~ N(0,σ2) is interpreted as a process error deviation. In the application discussed below, we use 
the Beverton–Holt model:

 Rt =
αSt

1+αSt /Rmax

eεt ,  (1)

where α is intrinsic productivity and Rmax is the asymptotic maximum recruitment. (Although 
we do not present model selection results here in the interest of space, previous analyses using 
this IPM framework found stronger support for the Beverton–Holt than the Ricker model for 
the data set described below.) The recruits from cohort t return to spawn in subsequent years, 
with the proportion of surviving adults returning at each age given by the cohort-specific vector 
pt. For example, in the case of Interior Columbia Basin spring/summer Chinook salmon, adults 
return at ages 3–5, so pt = (pt,3, pt,4, pt,5). By parameterizing the recruit age distribution conditional 
on survival to adulthood, we avoid having to estimate or specify annual survival and maturation 
probabilities during ocean residence, which are not identifiable from the data typically available 
for wild populations. The vector of age proportions in each cohort is drawn from a multivariate 
logistic normal distribution (Aitchison 1982) with mean vector γ and covariance matrix Σp:

 alr pt( )∼MVN γ , pΣ( ),  (2)

where the additive log ratio transformation is alr pt( )= log pt ,amin
/ pt ,amax( ),…,log pt ,amax−1

/ pt ,amax( )( ). 
The vector of log ratios is then easily transformed back to the simplex space of proportions. Note 
that the use of amax as the reference age class is arbitrary; equivalent distributions on the simplex 
of proportions are obtained regardless of the choice of reference class (Aitchison 1982).

The number of natural-origin (or “wild”) spawners in year t is then simply the sum over age 
classes of recruits minus losses to terminal fisheries (represented by the mortality rate, Ft ,a

obs) and 
any adults removed for hatchery broodstock (represented by the number taken, Bt):

 St
W = Rt−a pt−a ,a

a
∑ 1− Ft ,a

obs( )⎡
⎣
⎢

⎤
⎦
⎥− Bt .  (3)
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We assume broodstock removals are measured without error, since these are typically small 
numbers of fish that are well documented. For simplicity, we assume Ft ,aobs represents the true 
harvest rate, although in principle this assumption could be relaxed. The spawning population 
may also include hatchery-origin fish that are either deliberately or inadvertently allowed to 
reproduce naturally. We did not attempt to develop a process submodel describing life history 
trajectories of hatchery-born fish following their release as juveniles (i.e., survival to adulthood, 
age distribution, harvest mortality and broodstock removal, and natural dispersal or outplanting 
into natal or non-natal rivers). Instead we simply define p HOS,t, the proportion of hatchery-origin 
spawners in year t, as a parameter, so that

St
H = St

WpHOS,t /(1− pHOS,t ).

The total spawner abundance is then St = St
W + St

H.

We can extend the process model to describe the dynamics of an ensemble of populations 
by adopting a hierarchical framework (Clark 2005, Gelman et al. 2014). This entails two 
modifications to Equation 1. First, the Beverton–Holt parameters for each population i are 
assumed to follow a bivariate lognormal hyperdistribution, allowing them to be correlated:

log αi( ),log Rmax,i( )( )∼MVN µα ,Rmax
,Σα ,Rmax( ).

Second, in addition to the population-specific recruitment process error εit, we include a process 
error term that is shared among all populations, representing common environmental drivers 
(e.g., ocean conditions or hydrosystem operations). These shared productivity anomalies ϕ are 
modeled as an AR(1) process on the log scale,

 
log φt( )= x tβ+ νt

νt ∼N ρνt−1 ,σφ
2( ) , (4)

where ρ is the autocorrelation coefficient of the process error innovations v, and the time-varying 
mean is parameterized by a 1 × K vector of covariates xt and a corresponding K × 1 vector of 
regression coefficients β. This regression formulation provides a way to explicitly model the 
effects of environmental factors (including time trends or step changes) while accounting for any 
“unexplained” common fluctuations via autocorrelated noise. Thus, the full model for the cohort 
born in year t in population i,

 Rit =
αiSit

1+αiSit /Rmax,i

φte
εit ,  (5)

decomposes the variation in recruitment into spatial (among-population), temporal (among-
year), and idiosyncratic (residual) components.

5



The model for the time-varying cohort age distributions (Equation 2) also needs to be expanded 
in the multi-population context. We allow each population to have its own average (on the log-
ratio scale) adult age proportions γi, so the age vector for cohort t is drawn from a multivariate 
logistic normal distribution with covariance matrix Σp shared among populations:

 alr pit( )∼MVN γ i ,Σp( ).  (6)

The population-level mean vector of log ratios γi is, in turn, drawn from a multivariate normal 
hyperdistribution,

 γ i ∼MVN µ γ ,Σγ( ),  (7)

where the mean vector μγ represents the average age structure (on the log-ratio scale) of the 
multi-population ensemble, and the covariance matrix Σγ represents the among-population 
heterogeneity in average adult age distributions.

The observation model consists of three likelihood components. First, the observed or estimated 
total spawner abundance is lognormally distributed around the true abundance with observation 
error standard deviation σobs:

 log St
obs( )∼N log St( ),σobs

2( ).  (8)

Second, the observed age composition of natural-origin spawners is typically based on subsamples 
of carcasses or live fish handled at weirs. These sampling methods produce a vector of age 
frequencies which we assume to follow a multinomial distribution,

 nt ,amin

obs ,…,nt ,amax

obs⎡⎣ ⎤⎦ ∼Multinomial nt ,a
obs ;qt ,amin

,…,qt ,amax
a
∑⎛⎝⎜

⎞
⎠⎟
,  (9)

where nt ,a
obs is the observed count of age-a adults in year t, the sample size for the multinomial 

is the total number of fish aged, and the expected probability of age a in year t, qt,a, is found 
by normalizing the number of age-a spawners by the total natural-origin spawner abundance 
(Equation 3).

The third observation likelihood component is the frequency of hatchery- and wild-origin spawners, 
typically based on recovery of marks (e.g., adipose fin clips) on carcasses or fish passed over weirs. 
Again, these sampling methods produce counts, nt ,W

obs  and nt ,H
obs , which we assume to follow a binomial 

distribution with expected probability given by the true fraction of hatchery spawners:

 nt ,H
obs ∼Bin nt ,H

obs +nt ,W
obs , pHOS,t( ).  (10)

Note that we make no assumptions about the age structure of hatchery-origin adults; in principle, 
this could be incorporated into the observation model, but age frequencies of hatchery-origin fish 
are not widely available.

6



Parameter estimation

We estimate model parameters for the multiple-population IPM in a Bayesian framework 
(Gelman et al. 2014). The joint posterior distribution is the product of: 1) the prior on the 
hyperparameters (μα, μRmax

, σα, σRmax
, ρα,Rmax

, σ, β, ρ, σϕ, μγ, Σγ, Σp, and pHOS), 2) the probability density 
of the population-level random effects (spawner–recruit parameters and age structure means) and 
latent states (shared productivity anomalies, annual recruitment, and age structure) given their 
hyperparameters, 3) the prior on the initial states, and 4) the observation likelihood.

We used vague priors for all hyperparameters with the exception of the autocorrelation coefficient 
ρ, which was given a power-exponential prior that regularizes the tails of the posterior away from 
-1 and 1 to ensure stationarity:

 p ρ( )∝exp |ρ|
0.85

⎛
⎝⎜

⎞
⎠⎟
50⎡

⎣
⎢

⎤

⎦
⎥.  (11)

We explored alternate values of the shape and scale in this prior and found that they had fairly 
minor effects on the mean and bulk of the posterior mass. We also need to specify a prior on the 
initial states. Spawner abundance and age structure in the first 1:amax years of each population’s 
data series cannot be predicted based on previous states (recruitment and age structure), so for 
t = 1, ..., amax we assumed that log(Sit) ~ N(0,52) and qit, the vector of spawner age proportions, was 
distributed uniformly on the simplex. The prior on the initial shared process error innovation was 
the stationary distribution,

log νt( )∼N 0,
σφ

2

1−ρ2

⎛
⎝⎜

⎞
⎠⎟
.

We simulated 1,500 draws from the posterior distribution in each of three randomly initiated 
Markov chains using the Hamiltonian Monte Carlo algorithm (HMC; Monnahan et al. 2017) 
implemented in Stan 2.14.0 (Stan Development Team 2016) as run from R 3.3.3 (R Development 
Core Team 2017). The first 500 iterations of each chain were used as warmup and discarded, 
resulting in a total saved sample of 3,000 draws. We assessed convergence by visual inspection 
of traceplots and by verifying that Gelman and Rubin’s (1992) potential scale reduction factor 
was <1.1 for all parameters, and that there were no divergent transitions. Code for all analyses is 
available online as part of the R package salmonIPM.2

Forward simulation

Simulating future population trajectories under the IPM is straightforward; the process model 
is simply iterated for the desired number of years past the end of the time series of observations, 
generating a posterior predictive distribution of future states conditioned on the historical data. 

2 Available from E. R. Buhle, NWFSC, upon request.
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In particular, predicted future spawner abundance and age structure are conditioned on the 
incomplete cohorts at the end of the data series (i.e., those cohorts from which one or more older 
age classes have not yet returned to spawn). The IPM therefore assimilates the same information 
traditionally used in a sibling regression (Peterman 1982), in which linear relationships between 
age-class abundance within cohorts are used to predict older-aged adult returns given the 
observed younger-aged returns. In contrast to sibling regression, however, the IPM does not 
assume a fixed age structure, but allows the cohort age distribution to vary through time.

For all of the future simulations, we set broodstock removal and hatchery spawner abundance to 
zero to represent a baseline projection of risk in the absence of supplementation. We examined 
the impact of harvest-related mortality on population viability by varying the future harvest 
rate Ft,a over a range of values. The harvest mortality rate was constant within each simulated 
trajectory (i.e., Ft,a = Fa for all t), corresponding to a fixed-rate policy that does not depend on 
population size. Each set of parameters and states sampled from the joint posterior was used to 
generate multiple future trajectories, one for each value of Fa.

Application to Snake River spring/summer 
and Upper Columbia River spring Chinook salmon

We examined 26 populations of Chinook salmon in the Snake River spring/summer ESU and 
three populations in the Upper Columbia River spring ESU. In total, the data set includes 1,696 
cases (distinct population/year combinations) spanning six decades, from 1952 to 2016 (Table 1). 
We obtained population-specific annual estimates of age and hatchery/wild frequencies from 
state and tribal assessment biologists around the region. In many cases, this entailed retrieving 
information from historical reports and field records of spawning ground surveys. The majority 
of adults are age 4 or 5, with a smaller proportion of three-year-olds (almost entirely male); 
six-year-old spawners were observed in very few cases, so we omit this age class in the analysis. 
Spawner observations were missing in 67 cases, and age-frequency data were missing in 864 
cases, predominantly in the early years of the time series. These missing data pose no problems 
for the IPM approach, as the process model automatically imputes the underlying states.

Hatchery-origin spawners have been recorded in roughly two-thirds of the populations at some 
point during their history, but in most cases, hatchery programs were not operational before the 
mid-1980s. We therefore fixed pHOS,t at zero except in populations and time periods when hatchery-
origin adults were known to be present. We used estimates of the area of potential spawning habitat 
in each watershed to standardize spawner abundance among populations. That is, we used spawners/
ha as the state variable in the spawner–recruit model, and then multiplied by area to obtain total 
spawners as required for the observation model. While not strictly necessary, this approach scales 
Rmax,i to standardized units of spawners/ha for all populations, removing variation due to overall 
population size and bolstering the assumption of exchangeability of the random effects.

8



Table 1. Summary of Snake River spring/summer (SRSS) and Upper Columbia River spring (UCS) 
Chinook salmon data, including the range of sampling years (some years may have missing data), 
minimum viable abundance target (MAT) designated by the TRT, and the median (5th and 95th) 
percentiles for both the total observed spawner abundance and the proportion of hatchery-origin 
spawners (pHOS). MATs marked with an asterisk indicate populations designated as “maintained,” 
meaning that the recovery plan does not require them to exceed the MAT.

Population ESU Years  MAT Spawners pHOS

Catherine (GRCAT) SRSS 1955–2013 1,000 430 (43–1,926) 0.22 (0–0.78)
Lostine (GRLOS) SRSS 1952–2013 1,000 664 (95–1,792) 0.18 (0–0.75)
Minam (GRMIN) SRSS 1954–2013 750 550 (102–1,499) 0.08 (0–0.5)
Upper Grande Ronde (GRUMA) SRSS 1955–2013 1,000* 238 (21–1,016) 0.23 (0–0.95)
Wenaha (GRWEN) SRSS 1952–2013 750 541 (85–2,488) 0.11 (0–0.78)
Imnaha (IRMAI) SRSS 1952–2013 750 1,452 (349–3,569) 0.2 (0–0.65)
Bear Valley (MFBEA) SRSS 1957–2016 750 503 (59–2,004) 0
Big (MFBIG) SRSS 1957–2016 1,000 246 (19–773) 0.02 (0–0)
Camas (MFCAM) SRSS 1957–2016 500* 81(9–476) 0
Chamberlain (MFCHA) SRSS 1957–2016 750 520 (77–1,372) 0
Loon (MFLOO) SRSS 1957–2016 500 82 (9–697) 0
Marsh (MFMAR) SRSS 1957–2016 500 382 (23–1,349) 0
Sulphur (MFSUL) SRSS 1957–2016 500* 101 (2–478) 0
Upper Middle Fork Salmon (MFUMA) SRSS 1957–2016 750* 133 (11–703) 0

East Fork South Fork Salmon (SFEFS) SRSS 1960–2015 1,000* 442 (120–1,241) 0.15 (0–0.7)

South Fork Salmon (SFMAI) SRSS 1957–2016 1,000 1,192 (267–3,047) 0.2 (0–0.64)
Secesh (SFSEC) SRSS 1960–2016 750 408 (140–1,214) 0.02 (0–0.07)
Tucannon (SNTUC) SRSS 1957–2016 500 436 (104–1,182) 0.22 (0–0.65)
East Fork Salmon (SREFS) SRSS 1957–2016 1,000 488 (28–2,433) 0.05 (0–0.36)
Lemhi (SRLEM) SRSS 1957–2016 2,000 322 (45–2,259) 0
Lower Mainstem Salmon (SRLMA) SRSS 1957–2016 2,000* 181 (38–888) 0.02 (0–0.1)
North Fork Salmon River (SRNFS) SRSS 1957–2016 500* 108 (8–432) 0
Pahsimeroi (SRPAH) SRSS 1989–2016 1,000 207 (41–676) 0.41 (0.01–0.93)
Upper Salmon (SRUMA) SRSS 1957–2016 1,000 874 (94–2,228) 0.13 (0–0.43)
Valley (SRVAL) SRSS 1957–2016 500 153 (13–1,036) 0
Yankee (SRYFS) SRSS 1957–2016 500* 117 (2–1,497) 0.03 (0–0.11)
Entiat (UCENT) UCS 1960–2016 500 341 (71–1,020) 0.18 (0–0.55)
Methow (UCMET) UCS 1960–2016 2,000 1,376 (102–3,188) 0.31 (0–0.86)
Wenatchee (UCWEN) UCS 1960–2016 2,000 1,890 (260–4,115) 0.23 (0–0.79)

Harvest mortality, whether observed or simulated, was assumed to affect age-4 and 5 spawners 
equally; age-3 spawners were not subject to harvest. All harvest was assumed to occur in terminal 
fisheries as adults returned to spawn. In forward simulations, the constant harvest mortality 
ranged from 0 to 0.3 in increments of 0.05. (For comparison, the current management regime 
is designed to limit harvest impacts to 5–17% of the aggregate adult spring/summer Chinook 
salmon return to the Columbia River.)
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To explore the interactive effects of harvest mortality and environmental stochasticity on viability, 
we fit two versions of the IPM, making different assumptions about the historical pattern of 
average environmental conditions common to all populations (Equation 4). In the constant 
baseline model, the shared productivity anomalies are stationary, with mean zero (xt = 0 for 
all t), so the simulated future distribution of ϕt resembles the distribution of all estimated past 
values (Figure 1A). The step change model, by contrast, assumes that underlying environmental 
conditions shifted permanently at some point during the historical record (e.g., due to changes 
in the hydropower system or climatic regime), so in the future, log(ϕt) will have the same mean 
as the latter part of the estimated time series (Figure 1B). In this case, xt is a dummy indicator 
variable taking on one value before and another value after the step change (the values are 
centered to mean zero over the fitted time series). The change point was identified as the year 
1970, based on post-hoc analysis of the posterior mean series log(ϕ1952:2016) from the constant 
baseline model. This was the most recent year in which a t-test found a significant difference 

Figure 1. Procedure for summarizing simulated future population trajectories based on average 
environmental conditions. Productivity anomalies represent environmental fluctuations common 
to all populations, and are modeled as a first-order autoregressive process. In the constant baseline 
model (A), this AR(1) process has a constant zero mean, whereas in the step change model (B), the 
mean differs before and after the change point (the year 1970); the respective estimates and 95% 
credible intervals are shown as gray bands. Given the estimated anomalies over the period of observed 
data (gray lines to the left of the vertical bar), each trajectory in the posterior sample is extended into 
the future by simulating from the AR(1) process. Each future trajectory is characterized by its average 
environmental conditions (e.g., the blue and red horizontal lines in A and B), and the distribution 
of these averages is divided into equal thirds representing relatively good (blue), intermediate 
(yellow), or bad (red) conditions. These labels are then applied to the corresponding trajectories of 
future population size (C and D), allowing viability metrics to be computed either unconditionally 
or conditioned on average environmental conditions. For example, the overlapping histograms in C 
and D show the posterior predictive distribution of total spawners in year 50 in the future given that 
conditions are good, intermediate, or bad, while the gray curve shows the unconditional distribution.

A

C D

B
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between the earlier and later means. For each model structure, viability reference points were 
evaluated both unconditionally (over the full joint posterior) and conditional on average 
future environmental states. Each simulated future trajectory was characterized as “good,” 
“intermediate,” or “bad” for large-scale average productivity, corresponding to mean log(ϕt) 
values falling in the upper, middle, or lower third, respectively, of the distribution of such values 
(Figures 1A and 1B). Posterior summaries were then calculated separately for each category of 
future average environmental conditions (Figures 1C and 1D).

From each simulated trajectory, we evaluated three population-specific management reference points 
related to viability: 1) total wild spawner abundance in a given year, 2) total wild spawner abundance 
in a given year as a proportion of the minimum abundance target (MAT; Table 1) determined by 
the Interior Columbia Technical Recovery Team (ICTRT 2007), and 3) quasi-extinction, where 
the quasi-extinction threshold (QET) was defined in terms of the four-year running mean of total 
wild spawner abundance. The QET does not represent absolute extinction, but a threshold below 
which demographic and genetic risks and associated uncertainties become non-negligible. ICTRT 
(2007) used QET = 50 spawners based on the scarcity of historical observations of <50 spawners 
and consistency with applications by the Puget Sound and Lower Columbia/Willamette Technical 
Recovery Teams. Quasi-extinction occurs if the running mean falls below QET at least once, and the 
posterior predictive probability of quasi-extinction (PQE) for a given harvest rate is the proportion of 
trajectories where this occurs. The time horizon for forward simulations was 50 years past the end of 
the data series, and the three viability reference points were evaluated at 25 and 50 years.

As an additional reference point, we calculated the maximum harvest mortality that each population 
could sustain, in a purely deterministic model, before the growth rate falls below replacement:

 Fmax,i =1−
1
αi

.  (12)

Because our model (and reality) includes environmental stochasticity and potentially regime 
shifts, Fmax should not be overinterpreted; it provides an adjunct to help contextualize the results 
of the direct simulations.
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Results and Discussion
The multi-population IPM did a good job of capturing the historical dynamics of Snake River 
spring/summer and Upper Columbia River spring Chinook salmon populations (Figure 2). In the 
constant baseline model, the coefficient of determination between the median of the estimated 
log-spawners and the observed log-spawners across the entire data set was 0.92, and 99% of the 
observed values fell within the 95% credible interval based on the observation error distribution. 
Observation error in spawner abundance was greater (posterior mean and 95% confidence 
interval of σobs: 0.55, 0.50–0.60) than the unique process error in recruitment (σ: 0.46, 0.41–0.51). 
However, overall recruitment process error was dominated by the shared component, whose 
standard deviation was σφ / 1−ρ2  = 1.14 (0.87–1.50) and which was strongly autocorrelated 
(ρ: 0.75, 0.60–0.85). This can be seen in Figure 2, where the trajectories of different populations are 
highly synchronous. These results were nearly identical under the step change model except for 
the autocorrelation in the shared process errors, which was lower (ρ: 0.54, 0.28–0.79), as expected.

Estimated spawner–recruit curves varied considerably among populations (Figure 3, Table 2). 
Maximum recruitment was more variable (CV of Rmax: 184%) than maximum per capita 
productivity (CV of α: 61%), despite being standardized by the amount of spawning habitat. 
Nonetheless, there was consistent evidence of density dependence over the range of densities 
observed (Figure 3A). Posterior distributions of Rmax (Figure 3C) had well defined modes and 
right tails, indicating that the data ruled out arbitrarily large values (i.e., density independence).

Future projections of population viability were highly sensitive to environmental conditions and 
harvest-related mortality. Mean spawner abundance declined linearly with harvest mortality 
(hence the relationship appears convex on the log scale shown in Figure 4 for four populations 
representing a range of abundance and productivity). Indeed, this linearity is expected, based 
on simple equilibrium analysis of any deterministic, non-age-structured spawner–recruit model 
subjected to fixed-rate harvest. In the case of the Beverton–Holt,

R = αS
1+αS /Rmax

1− F( ),

the equilibrium is

S* = Rmax α−1( )
α

−RmaxF .

The unfished carrying capacity K (the intercept) depends on both maximum recruitment and 
maximum productivity, and a larger population (higher Rmax) will experience larger absolute 
declines for a given increase in harvest rate. If we consider the equilibrium as a proportion of K,

S*

K
=1− α

α−1
F ,
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the decline in abundance relative to the unfished baseline is still linear, but with a slope that 
depends on intrinsic productivity such that the less productive the population, the steeper the 
decline with increasing harvest rate.

Figure 2. Time series of observed (points) and estimated spawner abundance for each of 29 populations of 
Snake River spring/summer and Upper Columbia River spring Chinook salmon. The posterior median 
(solid gray line) is from the multipopulation IPM with constant baseline productivity. Posterior 95% 
credible intervals indicate process (dark shading) and observation (light shading) uncertainties.
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Figure 3. Estimated spawner–recruit relationship (A) and intrinsic productivity (B) and capacity (C) 
parameters for the multipopulation IPM with constant baseline productivity. Thin lines correspond 
to each of 29 populations of Snake River spring/summer and Upper Columbia River spring Chinook 
salmon; thick lines represent hyper-means across populations. In 3A, each curve is a posterior median 
and the shaded region represents the 95% credible interval of the hyper-mean curve (uncertainty 
around the population-specific curves is omitted for clarity).

Population α Rmax (spawners/ha) Fmax

GRCAT 1.37 (0.99–2.21) 49.98 (24.01–144.58) 0.27 (0–0.55)
GRLOS 3.11 (1.8–6.74) 10.19 (7.09–16.96) 0.68 (0.44–0.85)
GRMIN 3.93 (2.26–8.61) 20.21 (14.61–30.43) 0.75 (0.56–0.88)
GRUMA 1.48 (1–2.4) 16.69 (9.58–46.55) 0.32 (0–0.58)
GRWEN 2.1 (1.41–3.62) 23.29 (14.89–40.56) 0.52 (0.29–0.72)
IRMAI 3.46 (2.1–8.31) 24.3 (17.5–35.29) 0.71 (0.52–0.88)
MFBEA 3.73 (2.38–7.01) 12.59 (9.03–18.87) 0.73 (0.58–0.86)
MFBIG 6.52 (3.56–13.92) 2.1 (1.59–2.9) 0.85 (0.72–0.93)
MFCAM 2.61 (1.64–4.71) 3.73 (2.3–6.82) 0.62 (0.39–0.79)
MFCHA 4.75 (2.69–10.73) 11.72 (7.79–20.44) 0.79 (0.63–0.91)
MFLOO 3.89 (2.29–9.08) 2.29 (1.6–3.68) 0.74 (0.56–0.89)
MFMAR 2.52 (1.75–4) 17.9 (11.96–29.18) 0.6 (0.43–0.75)
MFSUL 2.04 (1.42–3.29) 16.85 (10.68–29.47) 0.51 (0.3–0.7)
MFUMA 5.1 (2.41–13.17) 0.84 (0.58–1.36) 0.8 (0.58–0.92)
SFEFS 3.48 (2.12–7.14) 4.75 (3.41–7.05) 0.71 (0.53–0.86)
SFMAI 7.3 (3.63–20.23) 3.47 (2.77–4.49) 0.86 (0.72–0.95)
SFSEC 6.2 (3.23–15.43) 8.15 (6.21–11.39) 0.84 (0.69–0.94)
SNTUC 2.39 (1.55–4.09) 32.82 (22.09–58.53) 0.58 (0.35–0.76)
SREFS 2.9 (1.99–4.83) 13.23 (8.73–21.69) 0.65 (0.5–0.79)
SRLEM 2.44 (1.72–3.75) 6.65 (4.17–11.26) 0.59 (0.42–0.73)
SRLMA 6.4 (3–21.34) 0.45 (0.33–0.68) 0.84 (0.67–0.95)
SRNFS 4.44 (2.64–8.52) 4.14 (2.9–6.1) 0.77 (0.62–0.88)
SRPAH 3.13 (1.67–7.03) 8.73 (4.72–27.24) 0.68 (0.4–0.86)
SRUMA 4.2 (2.54–8.41) 18.05 (13.01–28.01) 0.76 (0.61–0.88)
SRVAL 2.62 (1.86–4.16) 10.04 (6.58–16.55) 0.62 (0.46–0.76)
SRYFS 2.21 (1.64–3.16) 7.09 (4.53–11.86) 0.55 (0.39–0.68)
UCENT 2.3 (1.28–5.25) 19.78 (12.18–51.65) 0.56 (0.22–0.81)
UCMET 2.77 (1.54–4.98) 6.09 (4.35–10.16) 0.64 (0.35–0.8)
UCWEN 1.13 (0.85–1.93) 43.09 (13.87–296.84) 0.12 (0–0.48)
μθ 1.15 (0.84, 1.56) 2.21 (1.74, 2.68)
σθ 0.55 (0.38, 0.84) 1.17 (0.91, 1.58)
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Table 2. Posterior summaries (medians and 95% credible intervals) of population-specific intrinsic 
productivity (α) and asymptotic recruitment (Rmax), as well as their hyperparameters (log-mean and 
log-SD), under the multipopulation IPM with constant baseline productivity. Also shown is Fmax, the 
maximum harvest mortality that could be sustained in the absence of environmental stochasticity, 
which is a function of α.



Figure 4. Posterior predictive distributions of total wild spawners, 25 years in the future, for four Chinook 
salmon populations as a function of harvest mortality rate and average environmental conditions 
(green = good, red = bad, thick gray = unconditional; intermediate scenario omitted for clarity). 
Harvest is modeled as a fixed, density-independent mortality rate, and populations are assumed 
to receive no input of naturally spawning hatchery-origin adults. Lines are posterior medians, and 
shading indicates the 95% credible interval of the unconditional posterior. Results are shown for the 
constant baseline and step change versions of the multipopulation IPM.
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These linear declines in average abundance may nonetheless translate into nonlinear increases 
in quasi-extinction risk (Figure 5), because the PQE acts as a cumulative distribution function 
applied to the posterior predictive distribution of abundance. For two populations (Catherine 
Creek and Wenatchee, Table 2), the highest modeled harvest mortality of 0.3 exceeded the 
posterior median of Fmax, indicating a probability >0.5 that this mortality rate would, if sustained, 
cause long-term declines even in the absence of environmental fluctuations or regime shifts. 
One additional population (Upper Mainstem Grande Ronde) had a posterior median of Fmax that 
was barely above 0.3. For all other populations, the probability of Fmax < 0.3 was less than 0.05 
(Table 2). However, a population in a stochastic environment may experience quasi-extinction 
even if its deterministic equilibrium is nonzero (or above the QET), which is why the simulations 
generally indicate nontrivial quasi-extinction risk at harvest mortality rates well below Fmax.

Regardless of whether the historical pattern of environmental fluctuations was assumed to reflect 
variation around a constant baseline or a shift to a lower-productivity regime beginning in 
1970 (Figure 1), future environmental conditions were generally at least as influential as harvest 
mortality. In the cases shown in Figure 4, for example, the difference in total spawner abundance 
as the environmental background goes from good to bad exceeds the difference between harvest 
mortality of zero and 30%. The contrast in quasi-extinction risk across environmental scenarios 
is even more striking, due to the nonlinear shape of the PQE function (Figure 5). Populations 
subjected to bad average conditions (in the lowest third of the distribution) had severely elevated 
risks compared to the overall unconditional distribution. The impacts of environmental regime 
and harvest mortality on the stationary distribution of abundance were generally multiplicative 
(i.e., additive on the log scale shown in Figure 4), but again, this translated into synergistic 
or antagonistic interactive effects on quasi-extinction risk (Figure 5). As expected, the step 
change model gave more pessimistic forecasts than the constant baseline model. The effect of a 
persistent shift to a less-favorable regime was, however, partly mitigated by reduced uncertainty 
(e.g., compare Figures 1C and 1D). That is, the step change model ruled out the most extreme 
excursions in both the positive and negative directions.

Populations varied widely in their baseline viability and resilience to worsening environmental 
conditions and harvest mortality (Tables 3–7). Some (e.g., Yankee Fork) had substantial risks 
of quasi-extinction in as little as 25 years, even under favorable environmental conditions and 
no harvest. Others (e.g., Lemhi) could sustain harvest mortality up to 30% (with relatively low 
25-year quasi-extinction risk) as long as conditions remained good and one assumed a constant 
environmental baseline, but became increasingly sensitive to harvest impacts if conditions 
were intermediate or poor or if the baseline was assumed to have shifted in 1970. Assuming a 
permanent environmental change in 1970, many populations had at least a moderate risk of quasi-
extinction in 50 years even with no harvest and “good” environmental conditions (Table 7). 
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Figure 5. Posterior predictive probabilities of quasi-extinction, 25 years in the future, for four Chinook salmon 
populations as a function of harvest mortality rate and average environmental conditions (blue = good, 
yellow = intermediate, red = bad, thick gray line = unconditional). Harvest is modeled as a fixed, density-
independent mortality rate, and populations are assumed to receive no input of naturally spawning 
hatchery-origin adults. The quasi-extinction threshold is a four-year running average of 50 spawners. 
Results are shown for the constant baseline and step change versions of the multipopulation IPM.
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It is important to remember that this is not an equilibrium analysis. Under our density-dependent 
model, population size will eventually converge to a stochastic equilibrium represented by a 
stationary distribution (which could be a point mass at zero, if the maximum productivity 
falls below replacement), but it is not guaranteed to approach stationarity within a 50-year 
time horizon. In particular, if the realized growth rate is barely above or below replacement, 
then the transient dynamics could be very prolonged. An example of this is the Wenatchee, a 
relatively large population whose intrinsic productivity has a posterior distribution that straddles 
replacement (α: 1.13, 0.85–1.93). Fmax is quite low (0.12, 0–0.48), indicating that modest harvest 
impacts might not be sustainable even in a purely deterministic world, and the decline in 
simulated abundance as a function of harvest mortality is relatively steep at year 25 (Figure 4), 
yet quasi-extinction within this time horizon is far from assured (Figure 5). By year 50, however, 
abundance has declined further (compare Tables 3 and 4). The lesson is that the analysis 
presented here is concerned with dynamics over time scales relevant to recovery planning. Over 
the longer term, the inherent structural uncertainty related to “slow variables” not included in 
these models, such as climatic change and shifts in species interactions, will likely exceed the 
uncertainty that we can anticipate based on the observed and modeled stochastic dynamics.

Two caveats, stated previously, should be borne in mind when interpreting the results presented 
here. First, we simulated a fixed harvest-rate policy despite the fact that the current and likely 
future management system involves a sliding-scale harvest control rule based on the aggregate 
adult abundance of upriver spring/summer Chinook salmon entering the Columbia River. This 
modeling decision was made in the interest of tractability and avoiding additional assumptions, 
given that our model may not include all the populations comprising the aggregate run. As 
a result, our projections of harvest impacts are likely pessimistic, since a sliding-scale rule 
would reduce the mortality rate as abundance declines. However, in practice, the effects of 
such a rule at the population scale will depend on the degree of synchrony among populations. 
Strongly synchronous dynamics, such as we found, make it more likely that all populations 
will experience simultaneous declines, and thus will individually benefit from reduced harvest 
rates under a control rule based on aggregate abundance. Second, our simulations assume an 
absence of hatchery supplementation, also for reasons of tractability. Several of the populations 
studied here do in fact have ongoing supplementation programs, which may play an important 
role in buffering variability in abundance (e.g., Winship et al. 2014). For these populations, our 
results may again be pessimistic, although any demographic enhancement from hatchery-origin 
spawners may incur a cost to productivity (Naish et al. 2007, Christie et al. 2014, Scheuerell 
et al. 2015). A more detailed evaluation of this potential tradeoff is beyond the scope of this 
study. On the other hand, roughly half of the modeled populations have no history of hatchery 
supplementation, so in these cases our results apply cleanly.
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Life cycle models are commonly used to predict population responses to scenarios of future 
conditions. As such, the degree to which they can accurately and precisely capture retrospective 
patterns in population dynamics is critical to evaluating how much faith one should place in any 
future forecasts. Although IPMs have been used more widely in terrestrial and marine environments 
(Schaub and Abadi 2011, Maunder and Punt 2013), they have not yet been widely applied to studies 
of Pacific salmon. Here we have demonstrated how the development and application of an IPM 
sheds new light on the current and future status of at-risk populations. In particular, we see several 
advantages to this approach: 1) a unified framework for both the retrospective and prospective 
phases of analysis, 2) a full accounting of the uncertainties inherent in the available data, and 3) 
statistically consistent, probabilistic estimates of parameters and derived quantities of interest, such 
as quasi-extinction risks, and the abundance and productivity metrics specified under the Viable 
Salmonid Population recovery criteria (McElhany et al. 2000). In addition, the hierarchical nature 
of our IPM allows us to effectively borrow information from data-rich populations to help inform 
parameter estimation among the data-poor populations (Jiao et al. 2011, Punt et al. 2011).

Our IPM is presently based upon adult data only, but there is nothing precluding an expansion 
of the model to include any applicable juvenile data as well. For example, there are snorkel counts 
of stream-resident parr for a subset of the populations we analyzed here, which we have used 
successfully in other related analyses (Thorson et al. 2014). As noted above, efforts are underway to 
extend the adult-to-adult IPM described here to accommodate additional life history complexity. 
Including age or stage structure in the IPM framework can improve the accuracy and precision 
of parameter estimates such as the strength of density dependence and the variance of stochastic 
elements (Schaub and Abadi 2011), so these efforts could potentially lead to improved forecasts 
of harvest impacts as well as the ability to evaluate tributary habitat strategies, supplementation 
actions, and hydropower management alternatives.

Quantitative population viability analyses (PVAs) for Pacific salmon are negatively affected 
by a number of factors that mask the true population status, including observation errors, 
nonstationary age composition, and hatchery supplementation (Holmes 2004). Meta-analyses 
have shown that failing to adequately address observation errors leads to overestimates of the 
strength of density dependence (e.g., Freckleton et al. 2006, Knape and de Valpine 2012), which 
implies greater resilience to any potential disturbance. Furthermore, statistical models such as 
our IPM typically outperform much more detailed mechanistic models when estimating quasi-
extinction rates (Holmes et al. 2007) or forecasting future abundance (Ward et al. 2014). Our 
IPM provides estimates of intrinsic productivity and carrying capacity at both the population 
and larger ESU levels, the latter of which is the domain where any (de)listing decisions are made. 
Thus, we see potential for the further development of IPMs and their application to salmon 
conservation problems throughout the Pacific Northwest.

•
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Table 3. Posterior predictive distributions (median and 95% credible interval) of total wild spawners, 25 
years in the future, for 29 Chinook salmon populations as a function of harvest mortality rate (Mort.) 
and average environmental conditions. Harvest is simulated as a fixed, density-independent mortality 
rate, and populations are assumed to receive no input of naturally spawning hatchery-origin adults. 
Results are shown for the constant baseline and step change versions of the multipopulation IPM.

Constant baseline Step change 1970
Population Mort. Unconditional Good Bad Unconditional Good Bad

GRCAT 0 379 (1–12189) 1998 (163–25293) 37 (0–604) 108 (1–2532) 398 (43–4907) 23 (0–269)
0.1 293 (1–10971) 1581 (154–22508) 24 (0–466) 70 (1–1866) 277 (23–3912) 15 (0–195)
0.2 201 (0–8775) 1288 (87–18764) 14 (0–319) 45 (0–1458) 183 (14–3049) 9 (0–135)
0.3 127 (0–7313) 942 (60–15514) 7 (0–225) 25 (0–995) 121 (6–2282) 5 (0–66)

GRLOS 0 530 (13–7417) 1510 (172–13863) 128 (3–1319) 252 (21–1980) 535 (98–3844) 103 (7–672)
0.1 448 (11–7590) 1301 (159–13770) 101 (2–1149) 205 (14–1891) 459 (76–3933) 83 (6–536)
0.2 369 (6–6159) 1122 (148–11631) 79 (1–810) 165 (10–1719) 393 (63–3357) 63 (3–460)
0.3 300 (4–5080) 962 (124–10739) 59 (1–668) 125 (5–1332) 296 (51–2430) 42 (2–302)

GRMIN 0 569 (19–8957) 1648 (181–16132) 171 (5–1412) 300 (29–2425) 595 (100–4478) 138 (13–762)
0.1 481 (14–7368) 1398 (163–14907) 132 (3–1240) 241 (20–2094) 483 (93–3895) 112 (10–715)
0.2 427 (10–6056) 1146 (126–11973) 104 (2–1097) 206 (15–1815) 402 (79–3936) 84 (6–551)
0.3 350 (6–5265) 1016 (130–9656) 74 (1–886) 168 (10–1478) 356 (61–2727) 61 (4–424)

GRUMA 0 185 (1–5000) 777 (84–9795) 21 (0–397) 54 (1–1054) 179 (24–2279) 13 (0–119)
0.1 135 (1–4055) 662 (58–8066) 14 (0–205) 38 (1–887) 137 (16–1875) 9 (0–98)
0.2 96 (0–3518) 507 (49–7498) 8 (0–124) 26 (0–581) 95 (9–1364) 6 (0–65)
0.3 66 (0–2946) 421 (27–5638) 5 (0–112) 15 (0–494) 63 (6–914) 3 (0–39)

GRWEN 0 548 (5–10487) 2033 (210–20564) 96 (1–1286) 218 (8–2919) 579 (85–5342) 72 (3–546)
0.1 445 (3–9036) 1665 (203–21187) 72 (1–986) 172 (5–2307) 451 (74–4267) 53 (2–392)
0.2 354 (2–8490) 1407 (140–15921) 48 (0–746) 124 (3–1781) 342 (50–3584) 33 (1–377)
0.3 269 (1–6600) 1214 (120–12439) 27 (0–574) 83 (2–1421) 261 (30–2620) 20 (0–237)

IRMAI 0 992 (33–14694) 2789 (330–28404) 287 (9–2304) 494 (42–4602) 1029 (199–8277) 218 (18–1326)
0.1 877 (21–13473) 2620 (309–27117) 230 (5–2338) 412 (31–3822) 875 (156–7151) 169 (13–1089)
0.2 734 (15–12014) 2216 (267–23850) 187 (4–1694) 336 (21–3216) 760 (146–5569) 135 (7–856)
0.3 604 (10–10937) 1963 (210–18590) 128 (2–1175) 266 (14–2535) 604 (101–4477) 98 (6–679)

MFBEA 0 697 (22–10088) 1772 (245–20322) 221 (7–1764) 351 (28–2894) 679 (124–4848) 158 (14–834)
0.1 584 (17–9001) 1627 (182–18241) 177 (5–1853) 290 (24–2873) 600 (94–4155) 135 (12–760)
0.2 508 (12–7319) 1348 (184–16190) 143 (3–1240) 244 (17–2301) 481 (84–3921) 105 (7–611)
0.3 405 (7–6920) 1258 (136–12922) 101 (2–928) 187 (10–1902) 390 (63–3057) 72 (4–511)

MFBIG 0 263 (14–3309) 642 (79–6039) 106 (6–892) 145 (18–1117) 252 (43–2020) 84 (12–440)
0.1 227 (11–2858) 554 (73–5846) 90 (4–691) 130 (16–929) 222 (43–1441) 71 (9–352)
0.2 205 (9–2686) 486 (69–5310) 77 (4–656) 106 (14–857) 199 (38–1449) 56 (8–295)
0.3 173 (7–2333) 463 (59–4437) 60 (2–557) 90 (9–677) 169 (28–1108) 46 (4–267)

MFCAM 0 137 (2–2429) 410 (47–4990) 30 (1–323) 64 (3–626) 142 (23–1102) 24 (1–162)
0.1 111 (1–2109) 367 (44–3979) 25 (0–236) 48 (2–492) 114 (18–941) 17 (1–123)
0.2 94 (1–1796) 317 (36–3552) 18 (0–211) 37 (1–414) 96 (16–700) 11 (0–91)
0.3 71 (0–1518) 272 (28–3495) 12 (0–135) 27 (1–354) 68 (11–688) 7 (0–65)

MFCHA 0 717 (28–10640) 1755 (213–17288) 262 (7–2350) 381 (41–3097) 679 (124–6061) 189 (20–1157)
0.1 624 (19–9507) 1547 (189–19020) 205 (5–2057) 321 (31–2716) 597 (114–4852) 157 (14–866)
0.2 537 (14–7533) 1391 (148–14781) 166 (4–1820) 267 (23–2431) 509 (93–4503) 125 (11–791)
0.3 457 (12–7087) 1231 (159–14231) 127 (2–1322) 221 (15–1966) 432 (67–3945) 98 (8–611)

MFLOO 0 132 (4–1905) 336 (39–3720) 41 (1–364) 67 (6–587) 122 (23–1002) 31 (3–168)
0.1 116 (4–1798) 306 (41–3491) 36 (1–332) 56 (4–510) 109 (19–754) 26 (2–141)
0.2 98 (2–1427) 254 (34–3016) 26 (1–247) 46 (3–433) 89 (17–821) 20 (1–122)
0.3 79 (1–1330) 235 (29–2324) 20 (0–204) 37 (2–337) 75 (14–557) 14 (1–100)

MFMAR 0 443 (8–7635) 1486 (156–15631) 102 (2–1075) 198 (9–2051) 450 (75–3257) 71 (3–517)
0.1 380 (6–6792) 1234 (145–13326) 78 (1–710) 161 (7–1773) 379 (68–3323) 52 (3–405)
0.2 306 (3–5794) 1008 (121–11585) 56 (1–603) 125 (4–1504) 297 (49–2556) 36 (1–325)
0.3 235 (1–4867) 878 (115–10006) 38 (0–408) 83 (2–1052) 235 (36–1865) 23 (1–209)
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Table 3 (continued). Posterior predictive distributions of total wild spawners, 25 years in the future, for 29 
Chinook salmon populations.

Constant baseline Step change 1970
Population Mort. Unconditional Good Bad Unconditional Good Bad

MFSUL 0 116 (1–2346) 406 (47–4569) 21 (0–234) 46 (1–574) 117 (17–852) 13 (0–118)
0.1 93 (1–2119) 341 (41–4249) 15 (0–164) 36 (1–469) 98 (14–808) 9 (0–90)
0.2 70 (0–1800) 307 (32–3954) 10 (0–107) 26 (0–364) 72 (9–747) 6 (0–57)
0.3 53 (0–1554) 239 (28–3144) 6 (0–98) 17 (0–289) 52 (6–623) 3 (0–42)

MFUMA 0 140 (6–1935) 351 (45–3443) 54 (2–480) 76 (8–597) 137 (24–1169) 39 (4–211)
0.1 123 (5–1730) 299 (43–3786) 43 (1–396) 65 (7–551) 118 (22–889) 33 (3–190)
0.2 108 (3–1579) 275 (37–2866) 34 (1–303) 54 (5–451) 98 (16–801) 26 (2–163)
0.3 88 (2–1366) 234 (26–2328) 26 (1–256) 44 (3–368) 83 (16–645) 20 (2–147)

SFEFS 0 409 (12–6569) 1139 (174–12223) 130 (3–1143) 212 (15–1894) 429 (73–3029) 99 (8–492)
0.1 371 (9–5705) 1031 (157–11259) 101 (2–1035) 180 (12–1549) 354 (60–2469) 75 (6–406)
0.2 318 (6–4486) 918 (125–9340) 77 (1–677) 149 (8–1360) 300 (53–2151) 58 (3–305)
0.3 258 (4–4232) 784 (106–7457) 57 (1–538) 109 (5–1176) 256 (39–1892) 41 (2–242)

SFMAI 0 975 (59–11910) 2169 (288–24232) 393 (23–3648) 560 (73–3977) 913 (161–6593) 321 (42–1496)
0.1 872 (48–10675) 2070 (272–22607) 339 (17–2894) 492 (59–3563) 847 (152–5299) 279 (34–1400)
0.2 777 (41–10138) 1728 (222–18408) 275 (14–2714) 428 (51–3128) 742 (155–4934) 230 (29–1136)
0.3 648 (30–8080) 1523 (209–16205) 229 (8–1934) 360 (42–2696) 621 (125–4383) 193 (23–1062)

SFSEC 0 542 (26–5764) 1171 (140–10637) 207 (10–1643) 283 (34–2012) 481 (87–3171) 152 (21–716)
0.1 449 (20–5606) 1092 (152–10346) 167 (9–1588) 245 (28–1864) 420 (80–3068) 126 (13–679)
0.2 397 (16–5250) 908 (130–9762) 141 (5–1463) 208 (22–1633) 377 (74–2462) 103 (11–522)
0.3 334 (11–4700) 847 (117–8829) 119 (3–985) 174 (16–1396) 311 (62–2231) 85 (9–493)

SNTUC 0 437 (4–8602) 1381 (163–15756) 86 (1–1038) 184 (8–2088) 419 (69–3667) 62 (3–505)
0.1 357 (3–6803) 1223 (116–13908) 66 (1–674) 139 (5–1758) 354 (56–3030) 44 (2–375)
0.2 283 (1–5878) 1057 (132–10933) 47 (0–557) 105 (3–1457) 266 (44–2686) 28 (1–278)
0.3 214 (1–5386) 800 (90–10006) 29 (0–448) 71 (2–1209) 198 (28–2138) 17 (0–182)

SREFS 0 752 (16–11963) 2129 (251–20246) 205 (5–1790) 347 (18–3628) 679 (128–5576) 134 (7–914)
0.1 601 (10–10390) 1913 (232–21812) 154 (2–1438) 284 (13–3049) 607 (99–5255) 100 (5–713)
0.2 499 (7–9006) 1645 (210–17169) 118 (2–1067) 222 (8–2352) 508 (84–3946) 73 (4–554)
0.3 404 (5–7398) 1345 (153–15113) 80 (1–751) 159 (5–1701) 389 (58–3301) 48 (2–413)

SRLEM 0 540 (9–9633) 1753 (201–19569) 108 (2–1319) 228 (11–2392) 534 (84–3887) 82 (4–576)
0.1 441 (5–8998) 1482 (149–16280) 81 (1–891) 180 (6–2025) 447 (68–3781) 56 (2–434)
0.2 344 (3–7097) 1248 (133–15171) 59 (0–757) 132 (4–1765) 360 (52–2799) 37 (2–349)
0.3 256 (1–5773) 1060 (106–13938) 37 (0–404) 91 (2–1201) 246 (35–2404) 22 (1–250)

SRLMA 0 241 (14–3101) 597 (83–6003) 92 (5–815) 136 (17–1014) 226 (43–1735) 73 (10–380)
0.1 216 (11–2874) 492 (58–5288) 82 (4–732) 118 (14–907) 194 (39–1416) 63 (7–347)
0.2 193 (8–2171) 452 (62–4720) 66 (3–595) 102 (11–755) 176 (33–1341) 51 (6–318)
0.3 159 (6–2282) 410 (54–3904) 51 (2–500) 85 (9–622) 157 (27–1007) 42 (4–230)

SRNFS 0 115 (5–1660) 274 (37–3156) 40 (1–380) 62 (6–494) 106 (21–806) 30 (3–173)
0.1 97 (4–1421) 259 (35–2865) 32 (1–331) 52 (4–416) 93 (17–698) 25 (2–158)
0.2 87 (2–1308) 219 (33–2629) 25 (1–252) 41 (3–368) 83 (14–677) 19 (2–109)
0.3 70 (1–1072) 193 (23–2273) 18 (0–190) 33 (2–328) 64 (12–555) 14 (1–90)

SRPAH 0 411 (8–6625) 1151 (123–14641) 105 (2–1188) 184 (12–1829) 354 (65–3529) 76 (4–557)
0.1 329 (6–5842) 987 (110–12112) 81 (2–831) 155 (8–1577) 320 (63–2865) 59 (3–416)
0.2 270 (4–5187) 856 (82–10657) 62 (1–630) 121 (5–1371) 270 (46–2478) 43 (2–301)
0.3 219 (2–4004) 721 (72–8412) 41 (0–580) 91 (3–1053) 208 (34–1973) 29 (1–204)

SRUMA 0 1122 (42–15808) 2938 (412–31284) 387 (15–3764) 592 (61–4769) 1076 (186–8298) 298 (27–1564)
0.1 1014 (32–15442) 2489 (342–25263) 310 (10–3072) 515 (44–4197) 908 (180–7257) 240 (23–1271)
0.2 861 (23–12004) 2291 (305–23117) 252 (6–2358) 411 (33–3786) 786 (127–6093) 179 (13–1089)
0.3 682 (17–11003) 1853 (255–18373) 190 (5–1802) 332 (22–2974) 681 (118–5498) 137 (8–764)

SRVAL 0 254 (5–4653) 785 (98–9092) 61 (1–542) 119 (7–1069) 247 (45–1921) 42 (2–296)
0.1 201 (3–4039) 669 (92–7802) 50 (1–432) 92 (4–974) 209 (37–1628) 29 (2–243)
0.2 167 (2–3129) 557 (77–6143) 34 (0–372) 68 (3–822) 165 (24–1449) 22 (1–172)
0.3 130 (1–2721) 469 (59–5217) 22 (0–231) 49 (2–670) 131 (19–1219) 13 (1–116)
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Table 3 (continued). Posterior predictive distributions of total wild spawners, 25 years in the future, for 29 
Chinook salmon populations.

Table 4. Posterior predictive distributions (median and 95% credible interval) of total wild spawners, 50 
years in the future, for 29 Chinook salmon populations as a function of harvest mortality rate and 
average environmental conditions. Harvest is simulated as a fixed, density-independent mortality 
rate, and populations are assumed to receive no input of naturally spawning hatchery-origin adults. 
Results are shown for the constant baseline and step change versions of the multipopulation IPM.

Constant baseline Step change 1970
Population Mort. Unconditional Good Bad Unconditional Good Bad

GRCAT 0 344 (0–13850) 1666 (86–33854) 18 (0–1122) 55 (0–2216) 289 (13–5883) 5 (0–179)
0.1 264 (0–12494) 1340 (57–29032) 8 (0–556) 30 (0–1761) 179 (7–4421) 2 (0–108)
0.2 163 (0–10109) 1017 (43–23681) 3 (0–380) 12 (0–1139) 102 (3–2903) 1 (0–47)
0.3 88 (0–7726) 794 (28–20562) 1 (0–152) 4 (0–687) 52 (1–2058) 0 (0–25)

GRLOS 0 524 (6–9830) 1303 (119–19325) 149 (1–2666) 231 (8–2428) 480 (63–4593) 103 (2–841)
0.1 454 (4–7721) 1073 (101–16643) 121 (0–2081) 186 (6–1946) 396 (50–4527) 79 (1–651)
0.2 364 (2–7455) 958 (74–18188) 92 (0–1658) 145 (3–1674) 353 (35–3721) 53 (0–489)
0.3 288 (1–6629) 781 (57–13009) 58 (0–1310) 106 (1–1337) 257 (33–2665) 32 (0–324)

GRMIN 0 571 (13–10023) 1287 (103–19028) 211 (2–2975) 286 (20–2747) 531 (76–4985) 156 (7–1006)
0.1 495 (9–8463) 1154 (103–19861) 166 (2–2431) 240 (15–2161) 450 (64–3828) 114 (4–759)
0.2 425 (4–7783) 970 (82–17427) 126 (1–2096) 200 (9–2029) 402 (55–3526) 93 (2–681)
0.3 341 (3–6570) 855 (68–12895) 90 (0–1737) 151 (5–1692) 309 (41–3003) 67 (1–513)

GRUMA 0 163 (0–5360) 579 (36–13331) 12 (0–436) 33 (0–1002) 139 (9–1825) 4 (0–118)
0.1 109 (0–4741) 504 (24–10387) 6 (0–421) 18 (0–742) 93 (5–1927) 2 (0–75)
0.2 77 (0–3886) 402 (20–8493) 2 (0–212) 9 (0–471) 62 (2–1206) 1 (0–44)
0.3 47 (0–3073) 302 (12–8201) 1 (0–118) 3 (0–381) 30 (1–840) 0 (0–20)

GRWEN 0 536 (1–13666) 1645 (127–31225) 94 (0–2198) 190 (2–2867) 502 (50–5256) 51 (0–622)
0.1 449 (1–11160) 1312 (83–19749) 62 (0–1782) 131 (1–2458) 398 (32–5145) 27 (0–457)
0.2 316 (0–9063) 1185 (74–18793) 33 (0–1210) 87 (0–1913) 296 (24–3806) 13 (0–337)
0.3 232 (0–7641) 893 (55–16342) 16 (0–768) 48 (0–1382) 211 (12–2648) 5 (0–153)

IRMAI 0 997 (16–18108) 2359 (194–32867) 329 (3–4681) 484 (30–4615) 933 (120–7331) 233 (8–1769)
0.1 903 (9–15324) 2216 (188–28171) 261 (2–4442) 404 (16–4228) 796 (107–7128) 178 (4–1440)
0.2 750 (5–14619) 1832 (159–25710) 203 (1–3744) 325 (8–3676) 662 (75–6618) 134 (1–1027)
0.3 589 (3–12047) 1453 (128–23899) 142 (0–2772) 245 (4–2827) 530 (59–5210) 90 (1–809)

Constant baseline Step change 1970
Population Mort. Unconditional Good Bad Unconditional Good Bad

SRYFS 0 188 (2–3515) 622 (73–8120) 39 (0–407) 81 (3–890) 191 (30–1615) 26 (1–186)
0.1 154 (1–3125) 538 (61–5883) 30 (0–289) 62 (2–717) 159 (25–1215) 19 (1–140)
0.2 124 (1–2715) 454 (56–5750) 21 (0–225) 46 (1–631) 122 (23–1101) 13 (0–106)
0.3 93 (1–2107) 394 (44–4856) 12 (0–144) 30 (1–446) 96 (14–808) 7 (0–70)

UCENT 0 338 (4–6095) 1177 (139–11943) 69 (1–696) 140 (6–1489) 340 (54–2600) 49 (3–348)
0.1 282 (2–5271) 962 (113–12799) 48 (0–578) 112 (3–1446) 269 (47–2461) 34 (1–274)
0.2 217 (2–4352) 785 (86–10649) 34 (0–451) 83 (2–1122) 214 (28–1908) 22 (1–205)
0.3 165 (1–3713) 656 (81–8806) 21 (0–313) 57 (1–840) 175 (22–1427) 13 (0–152)

UCMET 0 874 (15–15948) 2405 (318–28031) 222 (3–2646) 402 (20–3680) 813 (130–5842) 152 (8–1167)
0.1 732 (10–13784) 2178 (264–24477) 180 (1–1795) 310 (15–3339) 705 (121–5863) 110 (6–943)
0.2 584 (6–10447) 1810 (244–24070) 124 (1–1439) 250 (9–3069) 558 (89–4560) 86 (3–733)
0.3 436 (3–9490) 1521 (207–19164) 91 (1–912) 178 (5–2205) 447 (68–3768) 54 (2–479)

UCWEN 0 1471 (2–74486) 9987 (796–196590) 92 (0–1904) 287 (3–9857) 1295 (108–21396) 46 (1–664)
0.1 985 (1–60143) 7458 (614–139277) 62 (0–1326) 181 (2–7117) 926 (71–19148) 25 (1–465)
0.2 675 (1–47531) 5384 (416–103719) 33 (0–889) 99 (1–4765) 589 (36–11796) 14 (0–276)
0.3 392 (0–35276) 4013 (276–94554) 17 (0–460) 50 (0–3141) 347 (19–9325) 7 (0–178)
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Table 4 (continued). Posterior predictive distributions of total wild spawners, 50 years in the future, for 29 
Chinook salmon populations.

Constant baseline Step change 1970
Population Mort. Unconditional Good Bad Unconditional Good Bad

MFBEA 0 690 (16–12392) 1586 (117–25660) 263 (3–3350) 365 (25–2694) 624 (79–4349) 171 (10–1401)
0.1 607 (11–9724) 1510 (105–21102) 214 (1–2436) 297 (18–2477) 566 (62–3699) 139 (5–1202)
0.2 494 (8–9083) 1227 (93–17487) 160 (1–2217) 238 (10–2052) 443 (55–3881) 100 (2–900)
0.3 384 (3–6697) 1030 (73–13319) 122 (0–1473) 174 (6–1825) 355 (43–3370) 67 (1–713)

MFBIG 0 269 (12–3704) 567 (51–6114) 122 (4–1179) 155 (17–1097) 245 (31–1665) 91 (10–593)
0.1 232 (10–3155) 504 (44–5254) 110 (2–1017) 135 (15–895) 225 (33–1441) 76 (8–544)
0.2 203 (8–2982) 458 (38–5685) 93 (2–783) 111 (11–762) 185 (28–1270) 63 (5–459)
0.3 168 (6–2412) 375 (32–4946) 73 (1–807) 95 (8–718) 159 (21–1092) 53 (3–416)

MFCAM 0 138 (1–2450) 376 (24–4539) 40 (0–550) 59 (2–622) 126 (14–959) 21 (0–207)
0.1 116 (0–2098) 317 (20–4388) 30 (0–487) 45 (1–525) 112 (10–875) 14 (0–146)
0.2 92 (0–1808) 285 (17–3822) 21 (0–321) 34 (0–377) 80 (8–766) 9 (0–122)
0.3 69 (0–1594) 223 (15–3632) 13 (0–217) 22 (0–330) 63 (5–583) 4 (0–88)

MFCHA 0 717 (23–11194) 1588 (126–21649) 317 (4–3315) 400 (32–2928) 638 (96–4429) 223 (16–1653)
0.1 632 (16–9851) 1425 (122–19215) 255 (3–2741) 326 (23–2399) 531 (86–4198) 176 (9–1367)
0.2 531 (11–8399) 1295 (109–13456) 207 (1–2320) 282 (18–2179) 475 (63–3284) 150 (7–1018)
0.3 441 (6–7189) 1029 (78–11465) 166 (1–1997) 220 (10–1973) 411 (53–3427) 106 (2–941)

MFLOO 0 129 (3–1897) 308 (23–3820) 51 (0–530) 66 (5–513) 114 (15–828) 33 (2–251)
0.1 111 (2–1901) 266 (22–3290) 41 (0–441) 58 (3–438) 105 (14–733) 29 (1–251)
0.2 95 (1–1657) 250 (20–3223) 32 (0–391) 48 (2–382) 87 (12–630) 22 (0–201)
0.3 80 (1–1342) 201 (15–2629) 23 (0–303) 38 (1–325) 70 (8–554) 15 (0–130)

MFMAR 0 441 (3–8173) 1211 (74–18940) 125 (1–1788) 192 (5–1987) 420 (50–3389) 67 (1–680)
0.1 375 (2–7164) 1118 (74–14548) 90 (0–1382) 146 (2–1723) 366 (35–2708) 44 (0–499)
0.2 295 (1–6098) 805 (56–13934) 62 (0–1082) 104 (1–1337) 280 (23–2371) 28 (0–411)
0.3 210 (0–5337) 728 (47–13088) 32 (0–698) 64 (0–1030) 203 (18–1796) 14 (0–258)

MFSUL 0 115 (0–2612) 356 (22–5591) 25 (0–394) 40 (0–515) 116 (10–904) 10 (0–146)
0.1 88 (0–2157) 304 (18–3641) 15 (0–308) 28 (0–411) 85 (6–861) 6 (0–97)
0.2 69 (0–1835) 250 (14–3859) 9 (0–218) 18 (0–355) 62 (5–646) 3 (0–67)
0.3 48 (0–1533) 204 (11–3736) 4 (0–133) 9 (0–242) 43 (2–505) 1 (0–40)

MFUMA 0 145 (4–2104) 337 (25–3732) 62 (1–607) 77 (7–578) 131 (18–795) 43 (4–332)
0.1 122 (3–1963) 278 (22–4225) 52 (1–525) 65 (6–528) 113 (13–828) 37 (3–248)
0.2 102 (2–1512) 241 (19–2848) 41 (0–453) 55 (4–453) 97 (10–661) 28 (2–235)
0.3 88 (1–1467) 210 (19–2571) 33 (0–377) 43 (2–348) 79 (9–559) 20 (1–175)

SFEFS 0 435 (7–6787) 970 (77–13073) 157 (1–1872) 205 (12–1863) 395 (48–3361) 107 (4–706)
0.1 369 (3–6828) 847 (69–13123) 126 (0–1623) 176 (8–1686) 348 (43–2558) 82 (2–687)
0.2 305 (2–5876) 784 (57–11412) 95 (0–1283) 139 (5–1327) 294 (32–2230) 57 (1–531)
0.3 251 (1–5098) 618 (51–8094) 68 (0–909) 105 (2–1050) 231 (27–1877) 37 (0–388)

SFMAI 0 972 (45–12726) 2014 (156–23810) 526 (13–4327) 582 (61–3658) 891 (135–5093) 353 (41–2228)
0.1 888 (42–12447) 1848 (185–22662) 425 (14–4203) 509 (52–3633) 817 (119–4780) 290 (29–1991)
0.2 778 (35–10146) 1638 (146–20500) 369 (8–3285) 442 (42–3204) 702 (97–4367) 252 (21–1586)
0.3 649 (27–9486) 1473 (145–16842) 290 (4–2487) 362 (33–2435) 577 (83–3981) 210 (16–1295)

SFSEC 0 528 (23–7300) 1157 (91–14171) 230 (6–2264) 292 (28–1916) 459 (65–2841) 161 (17–1314)
0.1 449 (18–6087) 981 (88–12315) 202 (5–1787) 255 (25–1773) 404 (61–2337) 141 (15–1121)
0.2 393 (13–5514) 857 (64–10290) 169 (3–1618) 217 (16–1580) 366 (49–2489) 116 (7–836)
0.3 342 (7–4802) 745 (73–9638) 142 (2–1308) 183 (13–1331) 294 (38–1763) 99 (6–733)

SNTUC 0 412 (1–8974) 1183 (77–17164) 95 (0–1797) 167 (2–2062) 395 (38–2890) 51 (0–565)
0.1 343 (1–7368) 1048 (63–16014) 66 (0–1140) 127 (1–1535) 317 (28–2779) 30 (0–490)
0.2 265 (0–6183) 866 (50–13974) 37 (0–976) 87 (0–1260) 249 (21–2486) 17 (0–320)
0.3 188 (0–4851) 698 (36–11582) 19 (0–685) 49 (0–917) 168 (11–1963) 7 (0–220)

SREFS 0 712 (9–12254) 1974 (154–22834) 248 (1–2875) 335 (12–3435) 667 (79–6058) 142 (3–1147)
0.1 617 (4–11348) 1532 (126–20211) 193 (0–2796) 270 (9–2719) 530 (69–4899) 99 (2–1052)
0.2 502 (3–10021) 1344 (87–20927) 137 (0–1876) 198 (4–2143) 426 (51–4667) 67 (1–626)
0.3 390 (1–9069) 1149 (61–17699) 83 (0–1541) 135 (1–1701) 348 (31–3237) 33 (0–490)
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Table 4 (continued). Posterior predictive distributions of total wild spawners, 50 years in the future, for 29 
Chinook salmon populations.

Constant baseline Step change 1970
Population Mort. Unconditional Good Bad Unconditional Good Bad

SRLEM 0 553 (3–10211) 1529 (98–21024) 139 (0–2022) 219 (5–2129) 490 (57–3468) 71 (1–702)
0.1 443 (2–9129) 1320 (86–20075) 91 (0–1717) 166 (2–1802) 386 (36–3268) 47 (0–560)
0.2 342 (1–7659) 1101 (66–15379) 62 (0–1374) 112 (1–1609) 324 (28–3172) 24 (0–424)
0.3 247 (0–6177) 877 (53–12294) 35 (0–885) 69 (0–1184) 226 (19–2103) 11 (0–247)

SRLMA 0 247 (11–3614) 550 (51–6071) 115 (3–1044) 137 (14–979) 222 (34–1348) 81 (8–532)
0.1 219 (7–3078) 468 (36–5491) 96 (3–980) 119 (11–868) 204 (27–1302) 69 (5–451)
0.2 185 (6–2615) 429 (35–5067) 78 (2–735) 105 (8–772) 168 (21–1113) 59 (4–397)
0.3 155 (4–2323) 351 (30–4464) 64 (1–716) 86 (6–577) 141 (18–960) 47 (2–348)

SRNFS 0 114 (3–1820) 268 (24–3974) 49 (1–492) 62 (4–490) 106 (16–676) 32 (2–254)
0.1 98 (2–1609) 233 (19–3312) 41 (0–487) 51 (3–411) 90 (12–626) 26 (2–189)
0.2 85 (1–1388) 207 (14–2640) 31 (0–346) 43 (2–354) 79 (10–564) 20 (1–165)
0.3 70 (1–1136) 174 (15–2542) 24 (0–271) 33 (1–307) 60 (6–447) 15 (0–126)

SRPAH 0 384 (4–7315) 986 (71–16064) 130 (1–2285) 183 (6–1608) 360 (46–3122) 76 (1–657)
0.1 325 (3–6965) 837 (57–14276) 96 (0–1371) 144 (3–1440) 297 (35–2449) 58 (1–516)
0.2 259 (1–5857) 733 (53–12285) 70 (0–1226) 114 (1–1286) 239 (27–2066) 39 (0–455)
0.3 211 (1–4402) 627 (42–9682) 45 (0–894) 80 (1–948) 190 (21–2068) 22 (0–295)

SRUMA 0 1122 (28–15778) 2494 (214–27355) 468 (6–4739) 607 (48–4637) 1052 (121–6717) 334 (16–2241)
0.1 982 (21–14021) 2210 (167–25360) 388 (4–4190) 514 (34–4568) 894 (116–7129) 265 (11–2051)
0.2 849 (16–12395) 1965 (153–24967) 317 (2–3464) 399 (21–3249) 754 (114–5117) 197 (7–1604)
0.3 706 (8–10834) 1787 (153–22316) 226 (1–2978) 319 (12–2866) 623 (76–4290) 142 (3–1311)

SRVAL 0 251 (2–4772) 658 (43–9588) 81 (0–961) 108 (3–1171) 231 (25–1721) 41 (1–385)
0.1 208 (1–3774) 571 (44–8946) 56 (0–940) 85 (2–1013) 189 (22–1634) 28 (0–315)
0.2 168 (0–3526) 518 (33–6803) 38 (0–590) 63 (1–767) 162 (17–1543) 17 (0–206)
0.3 125 (0–3034) 437 (29–5962) 22 (0–432) 40 (0–509) 119 (11–983) 9 (0–135)

SRYFS 0 189 (1–3674) 557 (34–7547) 42 (0–721) 76 (1–900) 167 (20–1409) 19 (0–286)
0.1 150 (0–3355) 461 (30–6188) 33 (0–568) 54 (0–663) 148 (13–1221) 12 (0–198)
0.2 123 (0–2858) 406 (23–6398) 19 (0–435) 35 (0–523) 110 (11–943) 6 (0–131)
0.3 84 (0–2411) 322 (20–5432) 10 (0–255) 21 (0–384) 82 (7–869) 3 (0–74)

UCENT 0 329 (1–6576) 950 (57–13893) 72 (0–1296) 126 (1–1451) 284 (33–2624) 36 (0–524)
0.1 262 (1–5419) 787 (51–11671) 52 (0–857) 96 (1–1178) 249 (25–2097) 24 (0–397)
0.2 197 (0–5042) 668 (47–10348) 30 (0–724) 65 (0–874) 185 (13–1708) 12 (0–238)
0.3 149 (0–4362) 561 (29–8080) 16 (0–493) 40 (0–738) 127 (6–1296) 5 (0–184)

UCMET 0 843 (5–15109) 2161 (172–33360) 248 (0–3419) 376 (8–3543) 743 (76–6222) 142 (1–1347)
0.1 715 (2–12939) 1919 (144–25384) 195 (0–3046) 304 (4–3254) 661 (71–5728) 110 (1–1262)
0.2 558 (1–11563) 1668 (110–23237) 124 (0–2007) 223 (2–2473) 500 (42–4404) 68 (0–819)
0.3 418 (0–9781) 1349 (77–21088) 75 (0–1841) 142 (0–1841) 394 (29–2833) 33 (0–546)

UCWEN 0 1263 (0–94186) 9177 (373–207481) 33 (0–2335) 95 (0–9299) 942 (34–23954) 4 (0–368)
0.1 789 (0–65070) 7536 (246–144594) 15 (0–1315) 40 (0–4910) 527 (11–15624) 1 (0–144)
0.2 427 (0–52773) 5461 (158–161662) 5 (0–587) 12 (0–3089) 265 (2–10434) 0 (0–74)
0.3 186 (0–41522) 3084 (85–93054) 1 (0–240) 3 (0–2069) 89 (1–5811) 0 (0–25)
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Table 5. Posterior predictive distributions (median and 95% credible interval) of total wild spawners as 
a percentage of MAT, 25 years in the future, for 29 Chinook salmon populations as a function of 
harvest mortality rate and average environmental conditions. Harvest is simulated as a fixed, density-
independent mortality rate, and populations are assumed to receive no input of naturally spawning 
hatchery-origin adults. Results are shown for the constant baseline and step change versions of the 
multipopulation IPM.

Constant baseline Step change 1970
Population Mort. Unconditional Good Bad Unconditional Good Bad

GRCAT 0 38 (0–1219) 200 (16–2529) 4 (0–60) 11 (0–253) 40 (4–491) 2 (0–27)
0.1 29 (0–1097) 158 (15–2251) 2 (0–47) 7 (0–187) 28 (2–391) 2 (0–19)
0.2 20 (0–877) 129 (9–1876) 1 (0–32) 5 (0–146) 18 (1–305) 1 (0–14)
0.3 13 (0–731) 94 (6–1551) 1 (0–22) 2 (0–100) 12 (1–228) 0 (0–7)

GRLOS 0 53 (1–742) 151 (17–1386) 13 (0–132) 25 (2–198) 54 (10–384) 10 (1–67)
0.1 45 (1–759) 130 (16–1377) 10 (0–115) 21 (1–189) 46 (8–393) 8 (1–54)
0.2 37 (1–616) 112 (15–1163) 8 (0–81) 17 (1–172) 39 (6–336) 6 (0–46)
0.3 30 (0–508) 96 (12–1074) 6 (0–67) 12 (1–133) 30 (5–243) 4 (0–30)

GRMIN 0 76 (3–1194) 220 (24–2151) 23 (1–188) 40 (4–323) 79 (13–597) 18 (2–102)
0.1 64 (2–982) 186 (22–1988) 18 (0–165) 32 (3–279) 64 (12–519) 15 (1–95)
0.2 57 (1–807) 153 (17–1596) 14 (0–146) 27 (2–242) 54 (11–525) 11 (1–73)
0.3 47 (1–702) 135 (17–1287) 10 (0–118) 22 (1–197) 48 (8–364) 8 (1–56)

GRUMA 0 19 (0–500) 78 (8–979) 2 (0–40) 5 (0–105) 18 (2–228) 1 (0–12)
0.1 13 (0–405) 66 (6–807) 1 (0–21) 4 (0–89) 14 (2–187) 1 (0–10)
0.2 10 (0–352) 51 (5–750) 1 (0–12) 3 (0–58) 9 (1–136) 1 (0–7)
0.3 7 (0–295) 42 (3–564) 0 (0–11) 2 (0–49) 6 (1–91) 0 (0–4)

GRWEN 0 73 (1–1398) 271 (28–2742) 13 (0–171) 29 (1–389) 77 (11–712) 10 (0–73)
0.1 59 (0–1205) 222 (27–2825) 10 (0–131) 23 (1–308) 60 (10–569) 7 (0–52)
0.2 47 (0–1132) 188 (19–2123) 6 (0–99) 17 (0–237) 46 (7–478) 4 (0–50)
0.3 36 (0–880) 162 (16–1659) 4 (0–77) 11 (0–189) 35 (4–349) 3 (0–32)

IRMAI 0 132 (4–1959) 372 (44–3787) 38 (1–307) 66 (6–614) 137 (27–1104) 29 (2–177)
0.1 117 (3–1796) 349 (41–3616) 31 (1–312) 55 (4–510) 117 (21–953) 23 (2–145)
0.2 98 (2–1602) 296 (36–3180) 25 (0–226) 45 (3–429) 101 (19–743) 18 (1–114)
0.3 81 (1–1458) 262 (28–2479) 17 (0–157) 35 (2–338) 81 (13–597) 13 (1–90)

MFBEA 0 93 (3–1345) 236 (33–2710) 29 (1–235) 47 (4–386) 91 (17–646) 21 (2–111)
0.1 78 (2–1200) 217 (24–2432) 24 (1–247) 39 (3–383) 80 (13–554) 18 (2–101)
0.2 68 (2–976) 180 (25–2159) 19 (0–165) 33 (2–307) 64 (11–523) 14 (1–81)
0.3 54 (1–923) 168 (18–1723) 13 (0–124) 25 (1–254) 52 (8–408) 10 (1–68)

MFBIG 0 26 (1–331) 64 (8–604) 11 (1–89) 14 (2–112) 25 (4–202) 8 (1–44)
0.1 23 (1–286) 55 (7–585) 9 (0–69) 13 (2–93) 22 (4–144) 7 (1–35)
0.2 21 (1–269) 49 (7–531) 8 (0–66) 11 (1–86) 20 (4–145) 6 (1–30)
0.3 17 (1–233) 46 (6–444) 6 (0–56) 9 (1–68) 17 (3–111) 5 (0–27)

MFCAM 0 27 (0–486) 82 (9–998) 6 (0–65) 13 (1–125) 28 (5–220) 5 (0–32)
0.1 22 (0–422) 73 (9–796) 5 (0–47) 10 (0–98) 23 (4–188) 3 (0–25)
0.2 19 (0–359) 63 (7–710) 4 (0–42) 7 (0–83) 19 (3–140) 2 (0–18)
0.3 14 (0–304) 54 (6–699) 2 (0–27) 5 (0–71) 14 (2–138) 1 (0–13)

MFCHA 0 96 (4–1419) 234 (28–2305) 35 (1–313) 51 (5–413) 91 (17–808) 25 (3–154)
0.1 83 (3–1268) 206 (25–2536) 27 (1–274) 43 (4–362) 80 (15–647) 21 (2–115)
0.2 72 (2–1004) 186 (20–1971) 22 (0–243) 36 (3–324) 68 (12–600) 17 (2–106)
0.3 61 (2–945) 164 (21–1897) 17 (0–176) 30 (2–262) 58 (9–526) 13 (1–81)

MFLOO 0 26 (1–381) 67 (8–744) 8 (0–73) 13 (1–117) 24 (5–200) 6 (1–34)
0.1 23 (1–360) 61 (8–698) 7 (0–66) 11 (1–102) 22 (4–151) 5 (0–28)
0.2 20 (0–285) 51 (7–603) 5 (0–49) 9 (1–87) 18 (3–164) 4 (0–24)
0.3 16 (0–266) 47 (6–465) 4 (0–41) 7 (0–67) 15 (3–111) 3 (0–20)

MFMAR 0 89 (2–1527) 297 (31–3126) 20 (0–215) 40 (2–410) 90 (15–651) 14 (1–103)
0.1 76 (1–1358) 247 (29–2665) 16 (0–142) 32 (1–355) 76 (14–665) 10 (1–81)
0.2 61 (1–1159) 202 (24–2317) 11 (0–121) 25 (1–301) 59 (10–511) 7 (0–65)
0.3 47 (0–973) 176 (23–2001) 8 (0–82) 17 (0–210) 47 (7–373) 5 (0–42)
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Table 5 (continued). Posterior predictive distributions of total wild spawners as a percentage of MAT, 25 
years in the future, for 29 Chinook salmon populations.

Constant baseline Step change 1970
Population Mort. Unconditional Good Bad Unconditional Good Bad

MFSUL 0 23 (0–469) 81 (9–914) 4 (0–47) 9 (0–115) 23 (3–170) 3 (0–24)
0.1 19 (0–424) 68 (8–850) 3 (0–33) 7 (0–94) 20 (3–162) 2 (0–18)
0.2 14 (0–360) 61 (6–791) 2 (0–21) 5 (0–73) 14 (2–149) 1 (0–11)
0.3 11 (0–311) 48 (6–629) 1 (0–20) 3 (0–58) 10 (1–125) 1 (0–8)

MFUMA 0 19 (1–258) 47 (6–459) 7 (0–64) 10 (1–80) 18 (3–156) 5 (1–28)
0.1 16 (1–231) 40 (6–505) 6 (0–53) 9 (1–73) 16 (3–119) 4 (0–25)
0.2 14 (0–211) 37 (5–382) 5 (0–40) 7 (1–60) 13 (2–107) 4 (0–22)
0.3 12 (0–182) 31 (4–310) 4 (0–34) 6 (0–49) 11 (2–86) 3 (0–20)

SFEFS 0 41 (1–657) 114 (17–1222) 13 (0–114) 21 (1–189) 43 (7–303) 10 (1–49)
0.1 37 (1–571) 103 (16–1126) 10 (0–104) 18 (1–155) 35 (6–247) 8 (1–41)
0.2 32 (1–449) 92 (13–934) 8 (0–68) 15 (1–136) 30 (5–215) 6 (0–31)
0.3 26 (0–423) 78 (11–746) 6 (0–54) 11 (0–118) 26 (4–189) 4 (0–24)

SFMAI 0 98 (6–1191) 217 (29–2423) 39 (2–365) 56 (7–398) 91 (16–659) 32 (4–150)
0.1 87 (5–1068) 207 (27–2261) 34 (2–289) 49 (6–356) 85 (15–530) 28 (3–140)
0.2 78 (4–1014) 173 (22–1841) 28 (1–271) 43 (5–313) 74 (15–493) 23 (3–114)
0.3 65 (3–808) 152 (21–1621) 23 (1–193) 36 (4–270) 62 (12–438) 19 (2–106)

SFSEC 0 72 (4–769) 156 (19–1418) 28 (1–219) 38 (4–268) 64 (12–423) 20 (3–96)
0.1 60 (3–747) 146 (20–1380) 22 (1–212) 33 (4–249) 56 (11–409) 17 (2–90)
0.2 53 (2–700) 121 (17–1302) 19 (1–195) 28 (3–218) 50 (10–328) 14 (1–70)
0.3 45 (1–627) 113 (16–1177) 16 (0–131) 23 (2–186) 42 (8–297) 11 (1–66)

SNTUC 0 87 (1–1720) 276 (33–3151) 17 (0–208) 37 (2–418) 84 (14–733) 12 (1–101)
0.1 71 (1–1361) 245 (23–2782) 13 (0–135) 28 (1–352) 71 (11–606) 9 (0–75)
0.2 57 (0–1176) 211 (26–2187) 9 (0–111) 21 (1–291) 53 (9–537) 6 (0–56)
0.3 43 (0–1077) 160 (18–2001) 6 (0–90) 14 (0–242) 40 (6–428) 3 (0–36)

SREFS 0 75 (2–1196) 213 (25–2025) 20 (1–179) 35 (2–363) 68 (13–558) 13 (1–91)
0.1 60 (1–1039) 191 (23–2181) 15 (0–144) 28 (1–305) 61 (10–526) 10 (0–71)
0.2 50 (1–901) 164 (21–1717) 12 (0–107) 22 (1–235) 51 (8–395) 7 (0–55)
0.3 40 (0–740) 134 (15–1511) 8 (0–75) 16 (1–170) 39 (6–330) 5 (0–41)

SRLEM 0 27 (0–482) 88 (10–978) 5 (0–66) 11 (1–120) 27 (4–194) 4 (0–29)
0.1 22 (0–450) 74 (7–814) 4 (0–45) 9 (0–101) 22 (3–189) 3 (0–22)
0.2 17 (0–355) 62 (7–759) 3 (0–38) 7 (0–88) 18 (3–140) 2 (0–17)
0.3 13 (0–289) 53 (5–697) 2 (0–20) 5 (0–60) 12 (2–120) 1 (0–13)

SRLMA 0 12 (1–155) 30 (4–300) 5 (0–41) 7 (1–51) 11 (2–87) 4 (0–19)
0.1 11 (1–144) 25 (3–264) 4 (0–37) 6 (1–45) 10 (2–71) 3 (0–17)
0.2 10 (0–109) 23 (3–236) 3 (0–30) 5 (1–38) 9 (2–67) 3 (0–16)
0.3 8 (0–114) 20 (3–195) 3 (0–25) 4 (0–31) 8 (1–50) 2 (0–11)

SRNFS 0 23 (1–332) 55 (7–631) 8 (0–76) 12 (1–99) 21 (4–161) 6 (1–35)
0.1 19 (1–284) 52 (7–573) 6 (0–66) 10 (1–83) 19 (3–140) 5 (0–32)
0.2 17 (0–262) 44 (7–526) 5 (0–50) 8 (1–74) 17 (3–135) 4 (0–22)
0.3 14 (0–214) 39 (5–455) 4 (0–38) 7 (0–66) 13 (2–111) 3 (0–18)

SRPAH 0 41 (1–662) 115 (12–1464) 10 (0–119) 18 (1–183) 35 (6–353) 8 (0–56)
0.1 33 (1–584) 99 (11–1211) 8 (0–83) 16 (1–158) 32 (6–287) 6 (0–42)
0.2 27 (0–519) 86 (8–1066) 6 (0–63) 12 (1–137) 27 (5–248) 4 (0–30)
0.3 22 (0–400) 72 (7–841) 4 (0–58) 9 (0–105) 21 (3–197) 3 (0–20)

SRUMA 0 112 (4–1581) 294 (41–3128) 39 (1–376) 59 (6–477) 108 (19–830) 30 (3–156)
0.1 101 (3–1544) 249 (34–2526) 31 (1–307) 51 (4–420) 91 (18–726) 24 (2–127)
0.2 86 (2–1200) 229 (31–2312) 25 (1–236) 41 (3–379) 79 (13–609) 18 (1–109)
0.3 68 (2–1100) 185 (25–1837) 19 (0–180) 33 (2–297) 68 (12–550) 14 (1–76)

SRVAL 0 51 (1–931) 157 (20–1818) 12 (0–108) 24 (1–214) 49 (9–384) 8 (0–59)
0.1 40 (1–808) 134 (18–1560) 10 (0–86) 18 (1–195) 42 (7–326) 6 (0–49)
0.2 33 (0–626) 111 (15–1229) 7 (0–74) 14 (1–164) 33 (5–290) 4 (0–34)
0.3 26 (0–544) 94 (12–1043) 4 (0–46) 10 (0–134) 26 (4–244) 3 (0–23)
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Table 5 (continued). Posterior predictive distributions of total wild spawners as a percentage of MAT, 25 
years in the future, for 29 Chinook salmon populations.

Table 6. Posterior predictive distributions (median and 95% credible interval) of total wild spawners as a 
percentage of MAT, 50 years in the future, for 29 Chinook salmon populations as a function of harvest 
mortality rate and average environmental conditions. Harvest is simulated as a fixed, density-independent 
mortality rate, and populations are assumed to receive no input of naturally spawning hatchery-origin 
adults. Results are shown for the constant baseline and step change versions of the multipopulation IPM.

Constant baseline Step change 1970
Population Mort. Unconditional Good Bad Unconditional Good Bad

GRCAT 0 34 (0–1385) 167 (9–3385) 2 (0–112) 6 (0–222) 29 (1–588) 0 (0–18)
0.1 26 (0–1249) 134 (6–2903) 1 (0–56) 3 (0–176) 18 (1–442) 0 (0–11)
0.2 16 (0–1011) 102 (4–2368) 0 (0–38) 1 (0–114) 10 (0–290) 0 (0–5)
0.3 9 (0–773) 79 (3–2056) 0 (0–15) 0 (0–69) 5 (0–206) 0 (0–3)

GRLOS 0 52 (1–983) 130 (12–1932) 15 (0–267) 23 (1–243) 48 (6–459) 10 (0–84)
0.1 45 (0–772) 107 (10–1664) 12 (0–208) 19 (1–195) 40 (5–453) 8 (0–65)
0.2 36 (0–745) 96 (7–1819) 9 (0–166) 15 (0–167) 35 (3–372) 5 (0–49)
0.3 29 (0–663) 78 (6–1301) 6 (0–131) 11 (0–134) 26 (3–266) 3 (0–32)

GRMIN 0 76 (2–1336) 172 (14–2537) 28 (0–397) 38 (3–366) 71 (10–665) 21 (1–134)
0.1 66 (1–1128) 154 (14–2648) 22 (0–324) 32 (2–288) 60 (8–510) 15 (1–101)
0.2 57 (1–1038) 129 (11–2324) 17 (0–280) 27 (1–271) 54 (7–470) 12 (0–91)
0.3 45 (0–876) 114 (9–1719) 12 (0–232) 20 (1–226) 41 (5–400) 9 (0–68)

GRUMA 0 16 (0–536) 58 (4–1333) 1 (0–44) 3 (0–100) 14 (1–182) 0 (0–12)
0.1 11 (0–474) 50 (2–1039) 1 (0–42) 2 (0–74) 9 (0–193) 0 (0–8)
0.2 8 (0–389) 40 (2–849) 0 (0–21) 1 (0–47) 6 (0–121) 0 (0–4)
0.3 5 (0–307) 30 (1–820) 0 (0–12) 0 (0–38) 3 (0–84) 0 (0–2)

GRWEN 0 72 (0–1822) 219 (17–4163) 12 (0–293) 25 (0–382) 67 (7–701) 7 (0–83)
0.1 60 (0–1488) 175 (11–2633) 8 (0–238) 18 (0–328) 53 (4–686) 4 (0–61)
0.2 42 (0–1208) 158 (10–2506) 4 (0–161) 12 (0–255) 40 (3–507) 2 (0–45)
0.3 31 (0–1019) 119 (7–2179) 2 (0–102) 6 (0–184) 28 (2–353) 1 (0–20)

IRMAI 0 133 (2–2414) 315 (26–4382) 44 (0–624) 65 (4–615) 124 (16–977) 31 (1–236)
0.1 120 (1–2043) 295 (25–3756) 35 (0–592) 54 (2–564) 106 (14–950) 24 (1–192)
0.2 100 (1–1949) 244 (21–3428) 27 (0–499) 43 (1–490) 88 (10–882) 18 (0–137)
0.3 79 (0–1606) 194 (17–3187) 19 (0–370) 33 (1–377) 71 (8–695) 12 (0–108)

Constant baseline Step change 1970
Population Mort. Unconditional Good Bad Unconditional Good Bad

SRYFS 0 38 (0–703) 124 (15–1624) 8 (0–81) 16 (1–178) 38 (6–323) 5 (0–37)
0.1 31 (0–625) 108 (12–1177) 6 (0–58) 12 (0–143) 32 (5–243) 4 (0–28)
0.2 25 (0–543) 91 (11–1150) 4 (0–45) 9 (0–126) 24 (5–220) 3 (0–21)
0.3 19 (0–421) 79 (9–971) 2 (0–29) 6 (0–89) 19 (3–162) 1 (0–14)

UCENT 0 68 (1–1219) 235 (28–2389) 14 (0–139) 28 (1–298) 68 (11–520) 10 (1–70)
0.1 56 (0–1054) 192 (23–2560) 10 (0–116) 22 (1–289) 54 (9–492) 7 (0–55)
0.2 43 (0–870) 157 (17–2130) 7 (0–90) 17 (0–224) 43 (6–382) 4 (0–41)
0.3 33 (0–743) 131 (16–1761) 4 (0–63) 11 (0–168) 35 (4–285) 3 (0–30)

UCMET 0 44 (1–797) 120 (16–1402) 11 (0–132) 20 (1–184) 41 (7–292) 8 (0–58)
0.1 37 (1–689) 109 (13–1224) 9 (0–90) 16 (1–167) 35 (6–293) 5 (0–47)
0.2 29 (0–522) 90 (12–1203) 6 (0–72) 13 (0–153) 28 (4–228) 4 (0–37)
0.3 22 (0–475) 76 (10–958) 5 (0–46) 9 (0–110) 22 (3–188) 3 (0–24)

UCWEN 0 74 (0–3724) 499 (40–9829) 5 (0–95) 14 (0–493) 65 (5–1070) 2 (0–33)
0.1 49 (0–3007) 373 (31–6964) 3 (0–66) 9 (0–356) 46 (4–957) 1 (0–23)
0.2 34 (0–2377) 269 (21–5186) 2 (0–44) 5 (0–238) 29 (2–590) 1 (0–14)
0.3 20 (0–1764) 201 (14–4728) 1 (0–23) 2 (0–157) 17 (1–466) 0 (0–9)
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Table 6 (continued). Posterior predictive distributions of total wild spawners as a percentage of MAT, 50 
years in the future, for 29 Chinook salmon populations.

Constant baseline Step change 1970
Population Mort. Unconditional Good Bad Unconditional Good Bad

MFBEA 0 92 (2–1652) 211 (16–3421) 35 (0–447) 49 (3–359) 83 (11–580) 23 (1–187)
0.1 81 (2–1296) 201 (14–2814) 29 (0–325) 40 (2–330) 75 (8–493) 19 (1–160)
0.2 66 (1–1211) 164 (12–2332) 21 (0–296) 32 (1–274) 59 (7–517) 13 (0–120)
0.3 51 (0–893) 137 (10–1776) 16 (0–196) 23 (1–243) 47 (6–449) 9 (0–95)

MFBIG 0 27 (1–370) 57 (5–611) 12 (0–118) 15 (2–110) 24 (3–167) 9 (1–59)
0.1 23 (1–315) 50 (4–525) 11 (0–102) 14 (1–89) 22 (3–144) 8 (1–54)
0.2 20 (1–298) 46 (4–568) 9 (0–78) 11 (1–76) 18 (3–127) 6 (1–46)
0.3 17 (1–241) 37 (3–495) 7 (0–81) 9 (1–72) 16 (2–109) 5 (0–42)

MFCAM 0 28 (0–490) 75 (5–908) 8 (0–110) 12 (0–124) 25 (3–192) 4 (0–41)
0.1 23 (0–420) 63 (4–878) 6 (0–97) 9 (0–105) 22 (2–175) 3 (0–29)
0.2 18 (0–362) 57 (3–764) 4 (0–64) 7 (0–75) 16 (2–153) 2 (0–24)
0.3 14 (0–319) 45 (3–726) 3 (0–43) 4 (0–66) 13 (1–117) 1 (0–18)

MFCHA 0 96 (3–1493) 212 (17–2887) 42 (1–442) 53 (4–390) 85 (13–591) 30 (2–220)
0.1 84 (2–1313) 190 (16–2562) 34 (0–365) 44 (3–320) 71 (11–560) 23 (1–182)
0.2 71 (1–1120) 173 (15–1794) 28 (0–309) 38 (2–291) 63 (8–438) 20 (1–136)
0.3 59 (1–959) 137 (10–1529) 22 (0–266) 29 (1–263) 55 (7–457) 14 (0–126)

MFLOO 0 26 (1–379) 62 (5–764) 10 (0–106) 13 (1–103) 23 (3–166) 7 (0–50)
0.1 22 (0–380) 53 (4–658) 8 (0–88) 12 (1–88) 21 (3–147) 6 (0–50)
0.2 19 (0–331) 50 (4–645) 6 (0–78) 10 (0–76) 17 (2–126) 4 (0–40)
0.3 16 (0–268) 40 (3–526) 5 (0–61) 8 (0–65) 14 (2–111) 3 (0–26)

MFMAR 0 88 (1–1635) 242 (15–3788) 25 (0–358) 38 (1–397) 84 (10–678) 13 (0–136)
0.1 75 (0–1433) 224 (15–2910) 18 (0–276) 29 (0–345) 73 (7–542) 9 (0–100)
0.2 59 (0–1220) 161 (11–2787) 12 (0–216) 21 (0–267) 56 (5–474) 6 (0–82)
0.3 42 (0–1067) 146 (9–2618) 6 (0–140) 13 (0–206) 41 (4–359) 3 (0–52)

MFSUL 0 23 (0–522) 71 (4–1118) 5 (0–79) 8 (0–103) 23 (2–181) 2 (0–29)
0.1 18 (0–431) 61 (4–728) 3 (0–62) 6 (0–82) 17 (1–172) 1 (0–19)
0.2 14 (0–367) 50 (3–772) 2 (0–44) 4 (0–71) 12 (1–129) 1 (0–13)
0.3 10 (0–307) 41 (2–747) 1 (0–27) 2 (0–48) 9 (0–101) 0 (0–8)

MFUMA 0 19 (1–281) 45 (3–498) 8 (0–81) 10 (1–77) 17 (2–106) 6 (0–44)
0.1 16 (0–262) 37 (3–563) 7 (0–70) 9 (1–70) 15 (2–110) 5 (0–33)
0.2 14 (0–202) 32 (3–380) 5 (0–60) 7 (1–60) 13 (1–88) 4 (0–31)
0.3 12 (0–196) 28 (3–343) 4 (0–50) 6 (0–46) 11 (1–75) 3 (0–23)

SFEFS 0 43 (1–679) 97 (8–1307) 16 (0–187) 20 (1–186) 39 (5–336) 11 (0–71)
0.1 37 (0–683) 85 (7–1312) 13 (0–162) 18 (1–169) 35 (4–256) 8 (0–69)
0.2 30 (0–588) 78 (6–1141) 9 (0–128) 14 (1–133) 29 (3–223) 6 (0–53)
0.3 25 (0–510) 62 (5–809) 7 (0–91) 11 (0–105) 23 (3–188) 4 (0–39)

SFMAI 0 97 (5–1273) 201 (16–2381) 53 (1–433) 58 (6–366) 89 (13–509) 35 (4–223)
0.1 89 (4–1245) 185 (19–2266) 43 (1–420) 51 (5–363) 82 (12–478) 29 (3–199)
0.2 78 (4–1015) 164 (15–2050) 37 (1–329) 44 (4–320) 70 (10–437) 25 (2–159)
0.3 65 (3–949) 147 (14–1684) 29 (0–249) 36 (3–243) 58 (8–398) 21 (2–130)

SFSEC 0 70 (3–973) 154 (12–1890) 31 (1–302) 39 (4–255) 61 (9–379) 21 (2–175)
0.1 60 (2–812) 131 (12–1642) 27 (1–238) 34 (3–236) 54 (8–312) 19 (2–149)
0.2 52 (2–735) 114 (9–1372) 23 (0–216) 29 (2–211) 49 (6–332) 15 (1–111)
0.3 46 (1–640) 99 (10–1285) 19 (0–174) 24 (2–177) 39 (5–235) 13 (1–98)

SNTUC 0 82 (0–1795) 237 (15–3433) 19 (0–359) 33 (0–412) 79 (8–578) 10 (0–113)
0.1 69 (0–1474) 210 (13–3203) 13 (0–228) 25 (0–307) 63 (6–556) 6 (0–98)
0.2 53 (0–1237) 173 (10–2795) 7 (0–195) 17 (0–252) 50 (4–497) 3 (0–64)
0.3 38 (0–970) 140 (7–2316) 4 (0–137) 10 (0–183) 34 (2–393) 1 (0–44)

SREFS 0 71 (1–1225) 197 (15–2283) 25 (0–287) 34 (1–343) 67 (8–606) 14 (0–115)
0.1 62 (0–1135) 153 (13–2021) 19 (0–280) 27 (1–272) 53 (7–490) 10 (0–105)
0.2 50 (0–1002) 134 (9–2093) 14 (0–188) 20 (0–214) 43 (5–467) 7 (0–63)
0.3 39 (0–907) 115 (6–1770) 8 (0–154) 14 (0–170) 35 (3–324) 3 (0–49)
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Table 6 (continued). Posterior predictive distributions of total wild spawners as a percentage of MAT, 50 
years in the future, for 29 Chinook salmon populations.

Constant baseline Step change 1970
Population Mort. Unconditional Good Bad Unconditional Good Bad

SRLEM 0 28 (0–511) 76 (5–1051) 7 (0–101) 11 (0–106) 24 (3–173) 4 (0–35)
0.1 22 (0–456) 66 (4–1004) 5 (0–86) 8 (0–90) 19 (2–163) 2 (0–28)
0.2 17 (0–383) 55 (3–769) 3 (0–69) 6 (0–80) 16 (1–159) 1 (0–21)
0.3 12 (0–309) 44 (3–615) 2 (0–44) 3 (0–59) 11 (1–105) 1 (0–12)

SRLMA 0 12 (1–181) 28 (3–304) 6 (0–52) 7 (1–49) 11 (2–67) 4 (0–27)
0.1 11 (0–154) 23 (2–275) 5 (0–49) 6 (1–43) 10 (1–65) 3 (0–23)
0.2 9 (0–131) 21 (2–253) 4 (0–37) 5 (0–39) 8 (1–56) 3 (0–20)
0.3 8 (0–116) 18 (1–223) 3 (0–36) 4 (0–29) 7 (1–48) 2 (0–17)

SRNFS 0 23 (1–364) 54 (5–795) 10 (0–98) 12 (1–98) 21 (3–135) 6 (0–51)
0.1 20 (0–322) 47 (4–662) 8 (0–97) 10 (1–82) 18 (2–125) 5 (0–38)
0.2 17 (0–278) 41 (3–528) 6 (0–69) 9 (0–71) 16 (2–113) 4 (0–33)
0.3 14 (0–227) 35 (3–508) 5 (0–54) 7 (0–61) 12 (1–89) 3 (0–25)

SRPAH 0 38 (0–731) 99 (7–1606) 13 (0–229) 18 (1–161) 36 (5–312) 8 (0–66)
0.1 33 (0–696) 84 (6–1428) 10 (0–137) 14 (0–144) 30 (4–245) 6 (0–52)
0.2 26 (0–586) 73 (5–1228) 7 (0–123) 11 (0–129) 24 (3–207) 4 (0–45)
0.3 21 (0–440) 63 (4–968) 5 (0–89) 8 (0–95) 19 (2–207) 2 (0–30)

SRUMA 0 112 (3–1578) 249 (21–2736) 47 (1–474) 61 (5–464) 105 (12–672) 33 (2–224)
0.1 98 (2–1402) 221 (17–2536) 39 (0–419) 51 (3–457) 89 (12–713) 26 (1–205)
0.2 85 (2–1240) 197 (15–2497) 32 (0–346) 40 (2–325) 75 (11–512) 20 (1–160)
0.3 71 (1–1083) 179 (15–2232) 23 (0–298) 32 (1–287) 62 (8–429) 14 (0–131)

SRVAL 0 50 (0–954) 132 (9–1918) 16 (0–192) 22 (1–234) 46 (5–344) 8 (0–77)
0.1 42 (0–755) 114 (9–1789) 11 (0–188) 17 (0–203) 38 (4–327) 6 (0–63)
0.2 34 (0–705) 104 (7–1361) 8 (0–118) 13 (0–153) 32 (3–309) 3 (0–41)
0.3 25 (0–607) 87 (6–1192) 4 (0–86) 8 (0–102) 24 (2–197) 2 (0–27)

SRYFS 0 38 (0–735) 111 (7–1509) 8 (0–144) 15 (0–180) 33 (4–282) 4 (0–57)
0.1 30 (0–671) 92 (6–1238) 7 (0–114) 11 (0–133) 30 (3–244) 2 (0–40)
0.2 25 (0–572) 81 (5–1280) 4 (0–87) 7 (0–105) 22 (2–189) 1 (0–26)
0.3 17 (0–482) 64 (4–1086) 2 (0–51) 4 (0–77) 16 (1–174) 1 (0–15)

UCENT 0 66 (0–1315) 190 (11–2779) 14 (0–259) 25 (0–290) 57 (7–525) 7 (0–105)
0.1 52 (0–1084) 157 (10–2334) 10 (0–171) 19 (0–236) 50 (5–419) 5 (0–79)
0.2 39 (0–1008) 134 (9–2070) 6 (0–145) 13 (0–175) 37 (3–342) 2 (0–48)
0.3 30 (0–872) 112 (6–1616) 3 (0–99) 8 (0–148) 25 (1–259) 1 (0–37)

UCMET 0 42 (0–755) 108 (9–1668) 12 (0–171) 19 (0–177) 37 (4–311) 7 (0–67)
0.1 36 (0–647) 96 (7–1269) 10 (0–152) 15 (0–163) 33 (4–286) 5 (0–63)
0.2 28 (0–578) 83 (6–1162) 6 (0–100) 11 (0–124) 25 (2–220) 3 (0–41)
0.3 21 (0–489) 67 (4–1054) 4 (0–92) 7 (0–92) 20 (1–142) 2 (0–27)

UCWEN 0 63 (0–4709) 459 (19–10374) 2 (0–117) 5 (0–465) 47 (2–1198) 0 (0–18)
0.1 39 (0–3254) 377 (12–7230) 1 (0–66) 2 (0–246) 26 (1–781) 0 (0–7)
0.2 21 (0–2639) 273 (8–8083) 0 (0–29) 1 (0–154) 13 (0–522) 0 (0–4)
0.3 9 (0–2076) 154 (4–4653) 0 (0–12) 0 (0–103) 4 (0–291) 0 (0–1)
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Table 7. Posterior predictive quasi-extinction probability, over a 25- or 50-year time horizon, for 29 
Chinook salmon populations as a function of harvest mortality rate and average environmental 
conditions (Unc. = unconditional probability). Harvest is simulated as a fixed, density-independent 
mortality rate, and populations are assumed to receive no input of naturally spawning hatchery-origin 
adults. The quasi-extinction threshold is a four-year running average of 50 spawners. Results are 
shown for the constant baseline and step change versions of the multipopulation IPM.

25 years 50 years
Constant baseline Step change 1970 Constant baseline Step change 1970

Population Mortality Unc. Good Bad Unc. Good Bad Unc. Good Bad Unc. Good Bad
GRCAT 0 0.24 0.03 0.59 0.32 0.06 0.68 0.41 0.1 0.84 0.63 0.26 0.96

0.1 0.3 0.04 0.68 0.42 0.11 0.79 0.48 0.13 0.9 0.74 0.38 0.99
0.2 0.35 0.07 0.76 0.54 0.19 0.89 0.56 0.18 0.95 0.84 0.57 1
0.3 0.43 0.11 0.85 0.66 0.31 0.95 0.65 0.26 0.98 0.9 0.72 1

GRLOS 0 0.13 0.01 0.35 0.1 0 0.27 0.25 0.05 0.56 0.24 0.05 0.53
0.1 0.16 0.02 0.4 0.14 0.02 0.35 0.3 0.06 0.65 0.31 0.08 0.65
0.2 0.19 0.02 0.47 0.2 0.02 0.47 0.34 0.07 0.72 0.42 0.14 0.78
0.3 0.24 0.03 0.57 0.29 0.05 0.62 0.41 0.11 0.81 0.55 0.22 0.89

GRMIN 0 0.11 0.01 0.29 0.07 0 0.19 0.2 0.03 0.47 0.17 0.03 0.4
0.1 0.13 0.01 0.34 0.1 0.01 0.26 0.25 0.05 0.56 0.23 0.05 0.5
0.2 0.16 0.02 0.41 0.15 0.02 0.37 0.3 0.06 0.64 0.32 0.08 0.65
0.3 0.21 0.02 0.5 0.21 0.03 0.48 0.36 0.1 0.73 0.43 0.13 0.8

GRUMA 0 0.37 0.08 0.78 0.53 0.18 0.89 0.59 0.21 0.96 0.82 0.53 1
0.1 0.43 0.11 0.84 0.63 0.27 0.94 0.65 0.27 0.99 0.89 0.68 1
0.2 0.51 0.16 0.91 0.73 0.4 0.97 0.71 0.36 1 0.93 0.8 1
0.3 0.58 0.23 0.94 0.82 0.55 0.99 0.79 0.48 1 0.97 0.9 1

GRWEN 0 0.15 0.01 0.4 0.15 0.01 0.37 0.29 0.04 0.65 0.34 0.08 0.7
0.1 0.19 0.02 0.48 0.21 0.02 0.5 0.34 0.06 0.74 0.45 0.12 0.83
0.2 0.24 0.03 0.57 0.29 0.05 0.63 0.41 0.1 0.82 0.57 0.22 0.92
0.3 0.3 0.05 0.67 0.4 0.1 0.77 0.49 0.15 0.9 0.69 0.34 0.96

IRMAI 0 0.06 0 0.16 0.03 0 0.09 0.12 0.01 0.32 0.09 0.01 0.23
0.1 0.07 0 0.2 0.05 0 0.13 0.15 0.02 0.38 0.13 0.02 0.32
0.2 0.09 0 0.26 0.07 0 0.19 0.2 0.03 0.47 0.18 0.03 0.42
0.3 0.13 0.01 0.34 0.11 0.01 0.29 0.25 0.04 0.57 0.27 0.06 0.59

MFBEA 0 0.09 0 0.24 0.06 0 0.16 0.17 0.02 0.42 0.13 0.02 0.32
0.1 0.11 0 0.31 0.08 0 0.22 0.21 0.03 0.51 0.19 0.03 0.44
0.2 0.14 0.01 0.38 0.12 0 0.33 0.26 0.05 0.6 0.27 0.06 0.59
0.3 0.18 0.01 0.47 0.18 0.02 0.46 0.32 0.06 0.7 0.37 0.1 0.72

MFBIG 0 0.26 0.04 0.6 0.26 0.05 0.57 0.43 0.14 0.8 0.46 0.18 0.81
0.1 0.3 0.06 0.67 0.34 0.09 0.68 0.47 0.18 0.84 0.55 0.26 0.88
0.2 0.35 0.08 0.75 0.42 0.12 0.8 0.54 0.23 0.91 0.67 0.37 0.95
0.3 0.41 0.11 0.82 0.52 0.18 0.88 0.61 0.29 0.95 0.75 0.47 0.98

MFCAM 0 0.57 0.26 0.93 0.74 0.45 0.98 0.73 0.45 0.98 0.9 0.72 1
0.1 0.62 0.32 0.94 0.8 0.57 0.99 0.79 0.53 1 0.94 0.82 1
0.2 0.68 0.37 0.97 0.87 0.69 1 0.83 0.6 1 0.97 0.9 1
0.3 0.75 0.46 0.99 0.92 0.79 1 0.89 0.7 1 0.98 0.95 1

MFCHA 0 0.09 0 0.25 0.05 0 0.13 0.17 0.02 0.4 0.11 0.02 0.26
0.1 0.11 0.01 0.29 0.07 0 0.19 0.19 0.03 0.45 0.15 0.02 0.36
0.2 0.13 0.01 0.36 0.1 0 0.27 0.24 0.04 0.54 0.21 0.05 0.46
0.3 0.17 0.01 0.44 0.14 0.01 0.36 0.29 0.06 0.63 0.29 0.07 0.6

MFLOO 0 0.56 0.24 0.94 0.74 0.45 0.97 0.75 0.48 0.99 0.9 0.75 1
0.1 0.61 0.29 0.95 0.8 0.54 0.99 0.79 0.54 1 0.94 0.84 1
0.2 0.67 0.36 0.98 0.87 0.67 1 0.85 0.64 1 0.97 0.92 1
0.3 0.73 0.43 0.99 0.91 0.76 1 0.89 0.72 1 0.98 0.95 1

MFMAR 0 0.17 0.01 0.45 0.17 0.02 0.44 0.3 0.06 0.68 0.35 0.08 0.72
0.1 0.22 0.02 0.53 0.23 0.02 0.56 0.36 0.08 0.76 0.45 0.12 0.84
0.2 0.26 0.03 0.64 0.32 0.04 0.72 0.43 0.12 0.84 0.57 0.21 0.92
0.3 0.32 0.05 0.73 0.44 0.1 0.85 0.51 0.17 0.92 0.7 0.36 0.98
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Table 7 (continued). Posterior predictive quasi-extinction probability, over a 25- or 50-year time horizon, 
for 29 Chinook salmon populations.

25 years 50 years
Constant baseline Step change 1970 Constant baseline Step change 1970

Population Mortality Unc. Good Bad Unc. Good Bad Unc. Good Bad Unc. Good Bad
MFSUL 0 0.59 0.28 0.94 0.79 0.53 0.99 0.76 0.49 0.99 0.93 0.82 1

0.1 0.65 0.34 0.96 0.85 0.64 0.99 0.82 0.57 1 0.96 0.88 1
0.2 0.71 0.41 0.99 0.9 0.74 1 0.86 0.66 1 0.98 0.94 1
0.3 0.77 0.49 0.99 0.94 0.84 1 0.91 0.75 1 0.99 0.97 1

MFUMA 0 0.51 0.19 0.89 0.67 0.37 0.95 0.71 0.4 0.98 0.87 0.68 1
0.1 0.57 0.24 0.94 0.76 0.49 0.98 0.76 0.48 0.99 0.92 0.78 1
0.2 0.63 0.31 0.96 0.83 0.6 0.99 0.81 0.56 1 0.96 0.88 1
0.3 0.71 0.4 0.99 0.89 0.72 1 0.87 0.68 1 0.98 0.94 1

SFEFS 0 0.16 0.01 0.43 0.13 0.01 0.35 0.29 0.07 0.64 0.28 0.06 0.6
0.1 0.2 0.02 0.49 0.19 0.01 0.48 0.34 0.08 0.7 0.37 0.1 0.74
0.2 0.23 0.03 0.58 0.26 0.03 0.6 0.39 0.11 0.79 0.48 0.17 0.85
0.3 0.29 0.04 0.68 0.35 0.07 0.71 0.47 0.15 0.88 0.6 0.27 0.93

SFMAI 0 0.04 0 0.11 0.02 0 0.05 0.09 0.01 0.23 0.04 0.01 0.1
0.1 0.05 0 0.14 0.03 0 0.07 0.11 0.01 0.27 0.06 0.01 0.15
0.2 0.07 0 0.18 0.04 0 0.11 0.13 0.02 0.34 0.08 0.01 0.21
0.3 0.09 0 0.24 0.05 0 0.15 0.17 0.02 0.4 0.12 0.02 0.29

SFSEC 0 0.11 0.01 0.29 0.07 0 0.2 0.2 0.04 0.47 0.16 0.02 0.37
0.1 0.13 0.01 0.35 0.1 0 0.26 0.24 0.05 0.53 0.21 0.04 0.46
0.2 0.17 0.02 0.43 0.14 0.02 0.36 0.3 0.07 0.62 0.27 0.08 0.56
0.3 0.21 0.03 0.52 0.21 0.02 0.48 0.35 0.09 0.71 0.37 0.12 0.69

SNTUC 0 0.2 0.02 0.51 0.21 0.03 0.52 0.35 0.08 0.72 0.41 0.11 0.78
0.1 0.25 0.03 0.6 0.29 0.05 0.64 0.4 0.1 0.81 0.51 0.17 0.88
0.2 0.29 0.04 0.68 0.37 0.07 0.78 0.47 0.13 0.88 0.63 0.26 0.95
0.3 0.35 0.05 0.78 0.51 0.15 0.88 0.54 0.18 0.94 0.76 0.45 0.99

SREFS 0 0.09 0 0.26 0.07 0 0.2 0.18 0.02 0.44 0.17 0.02 0.41
0.1 0.13 0.01 0.36 0.11 0 0.28 0.24 0.04 0.57 0.24 0.04 0.56
0.2 0.15 0.01 0.4 0.16 0 0.41 0.28 0.05 0.64 0.33 0.06 0.71
0.3 0.2 0.02 0.52 0.23 0.03 0.57 0.35 0.07 0.74 0.46 0.13 0.84

SRLEM 0 0.17 0.01 0.44 0.16 0.02 0.41 0.28 0.05 0.64 0.32 0.07 0.7
0.1 0.21 0.02 0.53 0.22 0.02 0.55 0.34 0.07 0.72 0.43 0.1 0.83
0.2 0.25 0.03 0.63 0.3 0.05 0.68 0.41 0.1 0.82 0.54 0.19 0.92
0.3 0.31 0.05 0.71 0.42 0.09 0.83 0.49 0.15 0.9 0.67 0.31 0.97

SRLMA 0 0.3 0.06 0.66 0.32 0.08 0.65 0.46 0.16 0.84 0.53 0.24 0.85
0.1 0.34 0.08 0.73 0.38 0.12 0.72 0.52 0.21 0.89 0.62 0.34 0.91
0.2 0.4 0.1 0.8 0.49 0.18 0.84 0.58 0.26 0.94 0.71 0.43 0.97
0.3 0.45 0.13 0.84 0.6 0.27 0.92 0.66 0.34 0.97 0.82 0.58 0.99

SRNFS 0 0.61 0.27 0.95 0.79 0.53 0.99 0.79 0.52 0.99 0.93 0.82 1
0.1 0.66 0.33 0.97 0.84 0.61 1 0.84 0.6 1 0.96 0.9 1
0.2 0.72 0.4 0.99 0.9 0.74 1 0.88 0.7 1 0.98 0.94 1
0.3 0.78 0.5 1 0.94 0.82 1 0.92 0.79 1 0.99 0.96 1

SRPAH 0 0.2 0.03 0.5 0.21 0.03 0.49 0.34 0.09 0.69 0.38 0.12 0.73
0.1 0.24 0.03 0.58 0.27 0.05 0.62 0.39 0.11 0.78 0.48 0.18 0.83
0.2 0.28 0.05 0.66 0.35 0.08 0.72 0.45 0.14 0.86 0.58 0.26 0.92
0.3 0.35 0.06 0.77 0.46 0.14 0.85 0.54 0.2 0.93 0.71 0.38 0.98

SRUMA 0 0.05 0 0.14 0.02 0 0.06 0.1 0.01 0.26 0.06 0 0.16
0.1 0.06 0 0.17 0.03 0 0.1 0.12 0.01 0.32 0.08 0.01 0.22
0.2 0.08 0 0.22 0.05 0 0.15 0.16 0.02 0.4 0.12 0.02 0.31
0.3 0.1 0 0.27 0.08 0 0.22 0.2 0.03 0.48 0.18 0.03 0.43

SRVAL 0 0.32 0.07 0.7 0.38 0.09 0.77 0.48 0.16 0.87 0.61 0.28 0.95
0.1 0.36 0.08 0.77 0.48 0.14 0.87 0.55 0.2 0.93 0.72 0.4 0.99
0.2 0.43 0.12 0.85 0.58 0.22 0.94 0.62 0.26 0.97 0.81 0.55 1
0.3 0.5 0.16 0.91 0.69 0.34 0.98 0.69 0.34 0.99 0.9 0.72 1
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Table 7 (continued). Posterior predictive quasi-extinction probability, over a 25- or 50-year time horizon, 
for 29 Chinook salmon populations.

25 years 50 years
Constant baseline Step change 1970 Constant baseline Step change 1970

Population Mortality Unc. Good Bad Unc. Good Bad Unc. Good Bad Unc. Good Bad
SRYFS 0 0.39 0.09 0.81 0.52 0.17 0.9 0.57 0.23 0.94 0.75 0.41 0.99

0.1 0.45 0.13 0.87 0.61 0.24 0.96 0.64 0.29 0.97 0.84 0.57 1
0.2 0.5 0.16 0.92 0.71 0.37 0.98 0.7 0.36 0.99 0.9 0.73 1
0.3 0.58 0.22 0.96 0.8 0.51 0.99 0.77 0.47 1 0.95 0.85 1

UCENT 0 0.24 0.03 0.58 0.28 0.04 0.63 0.4 0.09 0.81 0.51 0.18 0.88
0.1 0.29 0.04 0.68 0.36 0.08 0.74 0.46 0.13 0.88 0.61 0.28 0.93
0.2 0.34 0.05 0.76 0.47 0.12 0.85 0.53 0.18 0.93 0.72 0.39 0.98
0.3 0.4 0.08 0.84 0.58 0.2 0.93 0.59 0.23 0.96 0.81 0.54 0.99

UCMET 0 0.09 0 0.25 0.07 0 0.19 0.18 0.02 0.44 0.17 0.02 0.41
0.1 0.11 0 0.31 0.1 0 0.27 0.22 0.03 0.52 0.24 0.04 0.53
0.2 0.14 0.01 0.4 0.14 0.01 0.38 0.27 0.04 0.63 0.31 0.06 0.66
0.3 0.18 0.01 0.49 0.2 0.01 0.5 0.34 0.06 0.73 0.43 0.12 0.8

UCWEN 0 0.14 0 0.41 0.17 0.01 0.46 0.28 0.03 0.68 0.46 0.07 0.89
0.1 0.17 0.01 0.47 0.24 0.01 0.58 0.33 0.04 0.77 0.57 0.15 0.95
0.2 0.22 0.01 0.58 0.34 0.04 0.74 0.4 0.06 0.88 0.69 0.29 0.98
0.3 0.27 0.01 0.7 0.46 0.08 0.89 0.49 0.09 0.95 0.8 0.48 1
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